Introduction: Cyclic fatigue is the common reason for breakage of rotary instruments. This study was conducted to evaluate the effect of cryogenic treatment (CT) in improving the resistance to cyclic fatigue of endodontic rotary instruments.

Methods And Materials: In this study, 20 RaCe and 20 Mtwo files were randomly divided into two groups of negative control and CT. CT files were stored in liquid nitrogen at -196C for 24 h, and then were gradually warmed to the room temperature. All files were used (at torques and speeds recommended by their manufacturers) in a simulated canal with a 45 curvature until breakage. The time to fail (TF) was recorded and used to calculate the number of cycle to fail (NCF). Groups were compared using independent-samples t-test.

Results: Mean NCFs were 1248.2±68.1, 1281.6±78.6, 4126.0±179.2, and 4175.4±190.1 cycles, for the Mtwo-control, Mtwo-CT, RaCe-control, and RaCe-CT, respectively. The difference between the controls and their respective CT groups were not significant (>0.3). The difference between the systems was significant.

Conclusion: Deep CT did not improve resistance to cyclic fatigue of the evaluated rotary files.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431711PMC
http://dx.doi.org/10.22037/iej.2017.42DOI Listing

Publication Analysis

Top Keywords

cyclic fatigue
16
cryogenic treatment
8
fatigue endodontic
8
endodontic rotary
8
resistance cyclic
8
deep cryogenic
4
cyclic
4
treatment cyclic
4
fatigue
4
rotary
4

Similar Publications

Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.

View Article and Find Full Text PDF

Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.

View Article and Find Full Text PDF

Statement Of Problem: The angled screw channel (ASC) design has been well accepted for implant prostheses. However, investigation into the behavior of the ASC connection is sparse.

Purpose: The purpose of this in vitro study was to assess the effect of cyclic loading on the internal connection of an ASC system compared with straight access systems by measuring reverse torque values (RTVs) and using microcomputed tomography (µCT) imaging.

View Article and Find Full Text PDF

Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.

Sci Total Environ

December 2024

Leibniz University Hannover, Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, Hannover 30167, Germany.

Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely.

View Article and Find Full Text PDF

Stretchable and self-healing carboxymethyl cellulose/polyacrylic acid conductive hydrogels for monitoring human motions and electrophysiological signals.

Int J Biol Macromol

December 2024

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China. Electronic address:

Stretchable conductive hydrogels have attracted great attention in flexible electronics. Nevertheless, conductive hydrogels would suffer from an inevitable damage during use, significantly reducing the reliability and limiting the practicability. Herein, stretchable and self-healing conductive hydrogels are designed form carboxymethyl cellulose (CMC), polyacrylic acid (PAA), and Fe, which are applied for monitoring human motions and electrophysiological signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!