Antibiotic resistance is an increasingly serious threat to global health. Consequently, the development of non-antibiotic based therapies and disinfectants, which avoid induction of resistance, or cross-resistance, is of high priority. We report the synthesis of a biocidal complex, which is produced by the reaction between ionic oxidizable salts-iodide and thiocyanate-in the presence of hydrogen peroxide as an oxidation source. The reaction generates bactericidal reactive oxygen and iodine species. In this study, we report that the iodo-thiocyanate complex (ITC) is an effective bactericidal agent with activity against planktonic and biofilm cells of Gram-negative ( and ) and Gram-positive ( and methicillin-resistant ) bacteria. The minimum bactericidal concentrations and the minimum biofilm eradication concentrations of the biocidal composite were in the range of 7.8-31.3 and 31.3-250 μg ml, respectively. As a result, the complex was capable to cause a rapid cell death of planktonic test cultures at between 0.5 and 2 h, and complete eradication of dual and mono-species biofilms between 30 s and 10 min. Furthermore, the test bacteria, including a MRSA strain, exposed to the cocktail failed to develop resistance after serial passages. The antimicrobial activity of the ITC appears to derive from the combinational effect of the powerful species capable of oxidizing the essential biomolecules of bacteria. The use of this composition may provide an effective and efficient method for killing potential pathogens, as well as for disinfecting and removing biofilm contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412088 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.00680 | DOI Listing |
PLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFChem Biodivers
January 2025
Ordu University: Ordu Universitesi, Department of Chemistry, Cumhuriyet Mah., Ordu, TURKEY.
The concise synthesis of O-methyled-inositol derivative and conduritol derivatives was obtained starting from p-benzoquinone. Spectroscopic methods have been performed for characterization of new synthesized compounds. Cyclitols are useful molecules with anticancer, antibiotic, antinutrient and antileukemic activity.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Parul Institute of Applied Sciences, Faculty of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
The rise in antimicrobial resistance poses a significant threat to global health, particularly among diabetic patients who are prone to urinary tract infections (UTIs). Pathogens that cause UTI among diabetic patients exhibit significant multidrug resistance (MDR) patterns, necessitating more precise empirical treatment strategies..
View Article and Find Full Text PDFChem Biodivers
January 2025
Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.
Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Agriculture Economics, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
The urgent need to address the growing problem of antimicrobial resistance in multidrug-resistant bacteria requires the development of pioneering approaches to treatment. The present study aims to evaluate the antimicrobial potential of the essential oils (EOs) of Moringa oleifera (moringa), Cinnamomum verum (cinnamon), and Nigella sativa (black seed) and the synergistic effect of the mixture of these oils against Staphylococcus aureus MCC 1351. Statistical modeling revealed cinnamon oil had the highest individual antimicrobial potency, followed by black seed oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!