Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434029PMC
http://dx.doi.org/10.1038/s41598-017-02108-1DOI Listing

Publication Analysis

Top Keywords

superhydrophobic surfaces
20
plasma treatment
12
contact angle
12
superhydrophobic surface
12
superhydrophobic
8
simple one-step
8
one-step plasma
8
fabrication method
8
ptfe sheet
8
sliding angle
8

Similar Publications

The immense energy footprint of desalination and brine treatment is a barrier to a green economy. Interfacial evaporation (IE) offers a sustainable approach to water purification by efficient energy conversion. However, conventional evaporators are susceptible to fluctuations in solar radiation and the salinity of handling liquid.

View Article and Find Full Text PDF

Fe diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications.

J Colloid Interface Sci

January 2025

Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:

Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.

View Article and Find Full Text PDF

The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.

View Article and Find Full Text PDF

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!