Effect of Intensive Blood Pressure Lowering on Left Ventricular Hypertrophy in Patients With Hypertension: SPRINT (Systolic Blood Pressure Intervention Trial).

Circulation

From Epidemiological Cardiology Research Center, Department of Epidemiology and Prevention, Division of Public Health Sciences (E.Z.S., Z.-M.Z.), Department of Medicine, Section on Cardiology (E.Z.S.), and Department of Biostatistical Sciences, Division of Public Health Sciences (W.T.A.), Wake Forest School of Medicine, Winston-Salem, NC; Preventive Medicine Section, Medical Service, Veterans Affairs Medical Center, Memphis, TN (W.C.C.); Michael E. DeBakey VAMC and Baylor College of Medicine, Houston, TX (J.T.B.); Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington (J.A.N.); Charles and Jane Pak Center for Mineral Metabolism and Clinical Research and Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (J.A.N.); Department of Internal Medicine, Division of General Internal Medicine, Augusta University, GA (T.Y.C.); Division of Population Health and Computational Medicine, University of Miami, and Geriatric Research Education and Clinical Center, FL (L.T.); Department of Epidemiology, Division of Public Health, University of Minnesota, Minneapolis (L.G.); Division of Nephrology and Hypertension, University of Utah, Salt Lake City (M.E.C.); Department of Cardiovascular Diseases, Mayo Clinic, Jacksonville, FL (B.P.S.); Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (J.H.); Clinical Applications and Prevention Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD (L.J.F.); and Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham (C.E.L.).

Published: August 2017

Background: It is currently unknown whether intensive blood pressure (BP) lowering beyond that recommended would lead to more lowering of the risk of left ventricular hypertrophy (LVH) in patients with hypertension and whether reducing the risk of LVH explains the reported cardiovascular disease (CVD) benefits of intensive BP lowering in this population.

Methods: This analysis included 8164 participants (mean age, 67.9 years; 35.3% women; 31.2% blacks) with hypertension but no diabetes mellitus from the SPRINT trial (Systolic Blood Pressure Intervention Trial): 4086 randomly assigned to intensive BP lowering (target SBP <120 mm Hg) and 4078 assigned to standard BP lowering (target SBP <140 mm Hg). Progression and regression of LVH as defined by Cornell voltage criteria derived from standard 12-lead ECGs recorded at baseline and biannually were compared between treatment arms during a median follow-up of 3.81 years. The effect of intensive (versus standard) BP lowering on the SPRINT primary CVD outcome (a composite of myocardial infarction, acute coronary syndrome, stroke, heart failure, and CVD death) was compared before and after adjustment for LVH as a time-varying covariate.

Results: Among SPRINT participants without baseline LVH (n=7559), intensive (versus standard) BP lowering was associated with a 46% lower risk of developing LVH (hazard ratio=0.54; 95% confidence interval, 0.43-0.68). Similarly, among SPRINT participants with baseline LVH (n=605, 7.4%), those assigned to the intensive (versus standard) BP lowering were 66% more likely to regress/improve their LVH (hazard ratio=1.66; 95% confidence interval, 1.31-2.11). Adjustment for LVH as a time-varying covariate did not substantially attenuate the effect of intensive BP therapy on CVD events (hazard ratio of intensive versus standard BP lowering on CVD, 0.76 [95% confidence interval, 0.64-0.90] and 0.77 [95% confidence interval, 0.65-0.91] before and after adjustment for LVH as a time-varying covariate, respectively).

Conclusions: Among patients with hypertension but no diabetes mellitus, intensive BP lowering (target systolic BP <120 mm Hg) compared with standard BP lowering (target systolic BP <140 mm Hg) resulted in lower rates of developing new LVH in those without LVH and higher rates of regression of LVH in those with existing LVH. This favorable effect on LVH did not explain most of the reduction in CVD events associated with intensive BP lowering in the SPRINT trial.

Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01206062.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538944PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028441DOI Listing

Publication Analysis

Top Keywords

blood pressure
16
intensive blood
8
pressure lowering
8
left ventricular
8
ventricular hypertrophy
8
patients hypertension
8
systolic blood
8
pressure intervention
8
intervention trial
8
intensive lowering
8

Similar Publications

This study investigates the effectiveness of blood flow restriction (BFR) training in maintaining athletic performance during a taper phase in basketball players. The taper phase aims to reduce external load while maintaining training intensity. Seventeen experienced basketball players were randomised into two groups: a placebo group ( = 8, 22.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization.

View Article and Find Full Text PDF

Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk.

Nutrients

January 2025

Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro, University of Palermo, 90127 Palermo, Italy.

Metabolic syndrome is a cluster of risk factors, including abdominal obesity, insulin resistance, hypertension, dyslipidemia (intended as an increase in triglyceride levels and a reduction in HDL cholesterol levels), and elevated fasting glucose, that increase the risk of cardiovascular disease and type 2 diabetes. With the rising prevalence of metabolic syndrome, effective dietary interventions are essential in reducing these health risks. The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive oil and moderate in fish and poultry, has shown promise in addressing metabolic syndrome and its associated components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!