A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2017.05.006DOI Listing

Publication Analysis

Top Keywords

candidate vaccine
20
vaccine based
12
immune response
12
rubella candidate
8
based structurally
8
structurally modified
8
modified plant
8
plant virus
8
rubella antigen
8
rubella
7

Similar Publications

is an opportunistic fungal pathogen that is a continuous global health concern, especially for immunocompromised populations. The World Health Organization recognized as one of four critical fungal pathogens, thus emphasizing the need for increased research efforts and clinical resource expansion. Currently, there are no fungal vaccines available for clinical use.

View Article and Find Full Text PDF

() is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics.

View Article and Find Full Text PDF

Background: Immune correlates of protection are ideal tools to predict treatment or vaccine efficacy. However, the accuracy of the immune correlate and the capability to robustly predict the outcome of a vaccine candidate are determined by the performance of the in vitro immunoassay used. Several sporozoite seroneutralization assays have previously been used to assess antibody functional activities; however, a common limitation has been the need for fresh material, target cells and sporozoites, and operator-to-operator bias.

View Article and Find Full Text PDF

Unlabelled: , an opportunistic and notorious nosocomial pathogen, is responsible for many infections affecting soft tissues, skin, lungs, bloodstream, and urinary tract, accounting for more than 722,000 cases annually. Despite the numerous advancements in therapeutic options, no approved vaccine is currently available for this particular bacterium. Consequently, this study focused on creating a rational vaccine design using bioinformatics tools.

View Article and Find Full Text PDF

Immunogenicity and protective efficacy of recombinant chimeric antigens based on surface proteins of .

Front Immunol

December 2024

Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.

Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!