Structural characterization of membrane-bound human immunodeficiency virus-1 Gag matrix with neutron reflectometry.

Biointerphases

Departments of Physics and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 and NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899.

Published: May 2017

The structural characterization of peripheral membrane proteins represents a tremendous challenge in structural biology due to their transient interaction with the membrane and the potential multitude of protein conformations during this interaction. Neutron reflectometry is uniquely suited to address this problem because of its ability to structurally characterize biological model systems nondestructively and under biomimetic conditions that retain full protein functionality. Being sensitive to only the membrane-bound fraction of a water-soluble peripheral protein, neutron reflectometry obtains a low-resolution average structure of the protein-membrane complex that is further refined using integrative modeling strategies. Here, the authors review the current technological state of biological neutron reflectometry exemplified by a detailed report on the structure determination of the myristoylated human immunodeficiency virus-1 (HIV-1) Gag matrix associated with phosphoserine-containing model membranes. The authors found that the HIV-1 Gag matrix is able to adopt different configurations at the membrane in a pH-dependent manner and that the myristate group orients the protein in a way that is conducive to PIP-binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433906PMC
http://dx.doi.org/10.1116/1.4983155DOI Listing

Publication Analysis

Top Keywords

neutron reflectometry
16
gag matrix
12
structural characterization
8
human immunodeficiency
8
immunodeficiency virus-1
8
hiv-1 gag
8
characterization membrane-bound
4
membrane-bound human
4
virus-1 gag
4
neutron
4

Similar Publications

: active learning in neutron reflectometry for fast data acquisition.

J Appl Crystallogr

January 2024

NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far.

View Article and Find Full Text PDF

Extracting Thin Film Structures of Energy Materials Using Transformers.

ACS Phys Chem Au

January 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Neutron-Transformer Reflectometry Advanced Computation Engine (), a neural network model using a transformer architecture, is introduced for neutron reflectometry data analysis. It offers fast, accurate initial parameter estimations and efficient refinements, improving efficiency and precision for real-time data analysis of lithium-mediated nitrogen reduction for electrochemical ammonia synthesis, with relevance to other chemical transformations and batteries. Despite limitations in generalizing across systems, it shows promises for the use of transformers as the basis for models that could accelerate traditional approaches to modeling reflectometry data.

View Article and Find Full Text PDF

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Room-Temperature Magnetic Antiskyrmions in Canted Ferrimagnetic CoHo Alloy Films.

Adv Mater

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.

View Article and Find Full Text PDF

Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques.

Materials (Basel)

December 2024

Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.

Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!