Real-time measurement of phloem turgor pressure in Hevea brasiliensis with a modified cell pressure probe.

Bot Stud

Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, Vic, 3216, Australia.

Published: December 2014

Background: Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks.

Results: Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measurements showed that the phloem turgor pressure probe can sensitively measure the real-time variation of phloem turgor pressure in H. brasiliensis but the calculation of phloem turgor pressure with xylem tension, xylem sap osmotic potential and phloem sap osmotic potential will under-estimate it. The measured phloem turgor pressure gradient in H. brasiliensis is contrary to the Münch theory. The phloem turgor pressure of H. brasiliensis varied from 8-12 bar as a consequence of water withdrawal from transpiration. Tapping could result in a sharp decrease of phloem turgor pressure followed by a recovery from 8-45 min after the tapping. The recovery of phloem turgor pressure after tapping and its change with xylem sap flow suggest the importance of phloem water relationship in the phloem turgor pressure regulation.

Conclusion: The phloem turgor pressure probe is a reliable technique for measuring the real-time variation of phloem turgor pressures in H. brasiliensis. The technique could probably be extended to the accurate measurement of phloem turgor pressure in other woody plants which is essential to test the Münch theory and to investigate the phloem water relationship and turgor pressure regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432816PMC
http://dx.doi.org/10.1186/1999-3110-55-19DOI Listing

Publication Analysis

Top Keywords

phloem turgor
56
turgor pressure
56
pressure probe
20
phloem
18
pressure
17
turgor
15
measurement phloem
8
hevea brasiliensis
8
cell pressure
8
measuring real-time
8

Similar Publications

Carbon Dynamics Under Drought and Recovery in Grapevine's Leaves.

Plant Cell Environ

January 2025

Soil, Water, and Environmental Sciences, Volcani - Agricultural Research Organization, Ramat Yishai, Israel.

Drought stress reduces leaf net assimilation (A) and phloem export, but the equilibrium between the two is unknown. Consequently, the leaf carbon balance and the primary use of the leaf nonstructural carbohydrates (NSC) under water deficit are unclear. Also, we do not know how quickly leaves can replenish their NSC storage and resume export after rehydration.

View Article and Find Full Text PDF

Drought predisposes forest trees to bark beetle-induced mortality, but the physiological mechanisms remain unclear. While drought-induced water and carbon limitations have been implicated in defensive failure and tree susceptibility, evidence demonstrating how these factors interact is scarce. We withheld water from mature, potted Pinus edulis and subsequently applied a double-stem girdle to inhibit carbohydrate transport from the crown and roots.

View Article and Find Full Text PDF

Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport.

New Phytol

January 2025

Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082, Würzburg, Germany.

The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K). However, plants also developed mechanisms that enable the rapid extrusion of K in combination with anions. The combined release of K and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants.

View Article and Find Full Text PDF

In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanoparticles that are released by cells and participate in the transfer of information. It is now known that EVs from mammalian cells are involved in different physiological and pathophysiological processes (antigen presentation, tissue regeneration, cancer, inflammation, diabetes, etc.).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!