The extremely fast and efficient folding transition (in seconds) of globular proteins led to the search for some unifying principles embedded in the physics of the folding polypeptides. Most of the proposed mechanisms highlight the role of local interactions that stabilize secondary structure elements or a folding nucleus as the starting point of the folding pathways, i.e., a "bottom-up" mechanism. Non-local interactions were assumed either to stabilize the nucleus or lead to the later steps of coalescence of the secondary structure elements. An alternative mechanism was proposed, an "up-down" mechanism in which it was assumed that folding starts with the formation of very few non-local interactions which form closed long loops at the initiation of folding. The possible biological advantage of this mechanism, the "loop hypothesis", is that the hydrophobic collapse is associated with ordered compactization which reduces the chance for degradation and misfolding. In the present review the experiments, simulations and theoretical consideration that either directly or indirectly support this mechanism are summarized. It is argued that experiments monitoring the time-dependent development of the formation of specifically targeted early-formed sub-domain structural elements, either long loops or secondary structure elements, are necessary. This can be achieved by the time-resolved FRET-based "double kinetics" method in combination with mutational studies. Yet, attempts to improve the time resolution of the folding initiation should be extended down to the sub-microsecond time regime in order to design experiments that would resolve the classes of proteins which first fold by local or non-local interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425721 | PMC |
http://dx.doi.org/10.1007/s12551-013-0113-3 | DOI Listing |
Appl Spectrosc
January 2025
Department of Physics & Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA.
Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO atmospheres.
View Article and Find Full Text PDFSci Rep
January 2025
School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, 110159, China.
Point cloud analysis is integral to numerous applications, including mapping and autonomous driving. However, the unstructured and disordered nature of point clouds presents significant challenges for feature extraction. While both local and non-local features are essential for effective 3D point cloud analysis, existing methods often fail to seamlessly integrate these complementary features.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Graph neural network interatomic potentials (GNN-IPs) are gaining significant attention due to their capability of learning from large datasets. Specifically, universal interatomic potentials based on GNN, usually trained with crystalline geometries, often exhibit remarkable extrapolative behavior toward untrained domains, such as surfaces and amorphous configurations. However, the origin of this extrapolation capability is not well understood.
View Article and Find Full Text PDFEnviron Manage
December 2024
Centro de Estudios Demográficos, Urbanos y Ambientales, El Colegio de México A.C., Mexico City, Mexico.
Collaborative management of hydrological ecosystem services (HES) is crucial for their conservation and involves diverse stakeholders at three levels: environmental and land-use management (ELM), harvesting and physical access (HPA), and appropriation and appreciation (AA). This study analyzes collaborative networks within and between these levels in the Copalita-Huatulco watershed, Mexico, using a monoplex and multiplex social network approach to understand stakeholder interactions. Results indicate that the ELM and AA networks are diverse and polycentric, with NGOs occupying an influential role.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Deep Space Exploration Laboratory, Beijing 100195, China.
This paper focuses on simultaneous estimation of states and faults for a linear time-invariant (LTI) system observed by sensor networks. Each sensor node is equipped with an observer, which uses only local measurements and local interaction with neighbors for monitoring. The observability of said observer is analyzed where non-local observability of a sensor node is required in terms of the system state and faults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!