The use of biophysical proteomic techniques in advancing our understanding of diseases.

Biophys Rev

Department of Neurobiology, Physiology and Behavior, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA.

Published: June 2012

The use of proteomic approaches in investigating diseases is continuing to expand and has started to provide answers to substantial gaps in our understanding of disease pathogenesis as well as in the development of effective strategies for the early diagnosis and treatment of diseases. Biophysical techniques form a crucial part of the advanced proteomic techniques currently used and include mass spectrometry and protein separation techniques, such as two-dimensional gel electrophoresis and liquid chromatography. The application of biophysical proteomic techniques in the study of disease includes delineation of altered protein expression, not only at the whole-cell or tissue levels, but also in subcellular structures, protein complexes, and biological fluids. These techniques are also being used for the discovery of novel disease biomarkers, exploration of the pathogenesis of diseases, development of new diagnostic methodologies, and identification of new targets for therapeutics. Proteomic techniques also have the potential for accelerating drug development through more effective strategies for evaluating a specific drug's therapeutic effects and toxicity. This article discusses the application of biophysical proteomic techniques in delineating cardiovascular disease and other diseases, as well as the limitations and future research directions required for these techniques to gain greater acceptance and have a larger impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418381PMC
http://dx.doi.org/10.1007/s12551-012-0070-2DOI Listing

Publication Analysis

Top Keywords

proteomic techniques
20
biophysical proteomic
12
techniques
9
development effective
8
effective strategies
8
application biophysical
8
diseases
5
proteomic
5
biophysical
4
techniques advancing
4

Similar Publications

Background: Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy. Although previous research has explored associations between plasma proteins and CLL, the causal relationships remain unclear. This study used Mendelian randomization (MR) to investigate the causal relationship between 7156 plasma proteins and CLL risk.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Multi-Omics Research on Angina Pectoris: A Novel Perspective.

Aging Dis

December 2024

Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

Angina pectoris (AP), a clinical syndrome characterized by paroxysmal chest pain, is caused by insufficient blood supply to the coronary arteries and sudden temporary myocardial ischemia and hypoxia. Long-term AP typically induces other cardiovascular events, including myocardial infarction and heart failure, posing a serious threat to patient safety. However, AP's complex pathological mechanisms and developmental processes introduce significant challenges in the rapid diagnosis and accurate treatment of its different subtypes, including stable angina pectoris (SAP), unstable angina pectoris (UAP), and variant angina pectoris (VAP).

View Article and Find Full Text PDF

Background: The recent European-ancestry based genome-wide association study (GWAS) of Alzheimer disease (AD) by Bellenguez2022 has identified 75 significant genetic loci, but only a few have been functionally mapped to effector gene level. Besides the large-scale RNA expression, protein and metabolite levels are key molecular traits bridging the genetic variants to AD risk, and thus we decided to integrate them into the genetic analysis to pinpoint key proteins and metabolites underlying AD etiology. Few studies have generated more than one layer of post-transcriptional phenotypes, limiting the scale of biological translation of disease modifying treatments.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!