Voltage sensor of ion channels and enzymes.

Biophys Rev

Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso, 2360103, Chile.

Published: March 2012

Placed in the cell membrane (a two-dimensional environment), ion channels and enzymes are able to sense voltage. How these proteins are able to detect the difference in the voltage across membranes has attracted much attention, and at times, heated debate during the last few years. Sodium, Ca and K voltage-dependent channels have a conserved positively charged transmembrane (S4) segment that moves in response to changes in membrane voltage. In voltage-dependent channels, S4 forms part of a domain that crystallizes as a well-defined structure consisting of the first four transmembrane (S1-S4) segments of the channel-forming protein, which is defined as the voltage sensor domain (VSD). The VSD is tied to a pore domain and VSD movements are allosterically coupled to the pore opening to various degrees, depending on the type of channel. How many charges are moved during channel activation, how much they move, and which are the molecular determinants that mediate the electromechanical coupling between the VSD and the pore domains are some of the questions that we discuss here. The VSD can function, however, as a bona fide proton channel itself, and, furthermore, the VSD can also be a functional part of a voltage-dependent phosphatase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425699PMC
http://dx.doi.org/10.1007/s12551-011-0061-8DOI Listing

Publication Analysis

Top Keywords

voltage sensor
8
ion channels
8
channels enzymes
8
voltage-dependent channels
8
domain vsd
8
vsd
6
voltage
5
sensor ion
4
channels
4
enzymes cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!