Calcium channels and synaptic transmission in familial hemiplegic migraine type 1 animal models.

Biophys Rev

Instituto de Fisiología, Biología Molecular y Neurociencias (CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina.

Published: March 2014

One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430299PMC
http://dx.doi.org/10.1007/s12551-013-0126-yDOI Listing

Publication Analysis

Top Keywords

synaptic transmission
8
familial hemiplegic
8
hemiplegic migraine
8
cav21 channels
8
calcium channels
4
channels synaptic
4
transmission familial
4
migraine type
4
type animal
4
animal models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!