AI Article Synopsis

  • Increasing interest in microbial exopolysaccharides (EPSs) has led to the study of halophilic microorganisms, particularly a moderate halobacterium identified as ZJUQH CCTCC M2016754, which thrives in 10% NaCl environments.
  • The research focused on optimizing EPS production by experimenting with different fermentation medium compositions, revealing that KCl and MgSO₄ significantly influence EPS yield.
  • The ideal culture medium was determined, producing a maximum EPS concentration of 70.64 g/L in a bioreactor, indicating ZJUQH's potential applications in food, pharmaceuticals, agriculture, and environmental biotreatment.

Article Abstract

With the rising awareness of microbial exopolysaccharides (EPSs) application in various fields, halophilic microorganisms which produce EPSs have received broad attention. A newly identified ZJUQH CCTCC M2016754 was determined to be a moderate halobacterium on account of its successful adaption to the environment containing 10% NaCl. The optimal combination of fermentation medium compositions on EPS production was studied. In this work, a fractional factorial design was adopted to investigate the significant factors that affected EPS production. The factors of KCl and MgSO₄ were found to have a profound impact on EPS production. We utilized central composite design and response surface methodology to derive a statistical model for optimizing the submerged culture medium composition. Judging from these experimental results, the optimum culture medium for producing EPSs was composed of 0.50% casein hydrolysate, 1.00% sodium citrate, 0.30% yeast extract, 0.50% KCl, 0.50% peptone, and 5.80% MgSO₄ (initial pH 7.0). The maximal EPS was 48.01 g/L, which is close to the predicted value (50.39 g/L). In the validation experiment, the highest concentration of 70.64 g/L EPSs was obtained after 120 h under the optimized culture medium in a 5-L bioreactor. EPS from this bacterium was also characterized by differential scanning calorimetry (DSC) and Fourier transform infrared analysis (FT-IR). The findings in this study imply that ZJUQH has great potential to be exploited as a source of EPSs utilized in food, the pharmaceutical and agriculture industry, and in the biotreatment of hypersaline environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153930PMC
http://dx.doi.org/10.3390/molecules22050814DOI Listing

Publication Analysis

Top Keywords

eps production
16
culture medium
12
response surface
8
surface methodology
8
epss
5
eps
5
optimization eps
4
production
4
production characterization
4
characterization halophilic
4

Similar Publications

The genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.

View Article and Find Full Text PDF

Due to the global outbreaks caused by pathogens, disinfection has attracted widespread attention, especially as the final inactivation step in wastewater treatment plants (WWTPs). Ultraviolet (UV) radiation is regarded as one of low carbon disinfection methods without chemical agents, but in practice, the effects are sometimes unsatisfactory, e.g.

View Article and Find Full Text PDF

Dextran is an exopolysaccharide (EPS) with multifunctional applications in the food and pharmaceutical industries, primarily synthesized from . Dextran can be produced from dextrin through fermentation, utilizing its dextran dextrinase activity. This study examined how jar fermentor conditions impact the growth and enzyme activity of , with a focus on the effects of pH on dextran synthesis via bioconversion (without pH control, pH 4.

View Article and Find Full Text PDF

Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.

View Article and Find Full Text PDF

A Pyrroloquinazoline Analogue Regulated Streptococcus mutans and Streptococcus sanguinis Dual-Species Biofilms.

Int Dent J

January 2025

School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China. Electronic address:

Objective: Selective inhibition of cariogenic bacteria is regarded as a potential strategy against caries. To assess the potential of SCH-79797, one novel promising antibiotic, in microbial equilibrium using a dual-species biofilms model of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!