Sugars Require Rigid Multivalent Displays for Activation of Mouse Sperm Acrosomal Exocytosis.

Biochemistry

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.

Published: June 2017

As a prerequisite to mammalian fertilization, the sperm acrosomal vesicle fuses with the plasma membrane and the acrosome contents are exocytosed. Induction occurs through engagement of the sperm receptors by multiple sugar residues. Multivalent polymers displaying mannose, fucose, or GlcNAc are effective synthetic inducers of mouse sperm acrosomal exocytosis (AE). Each carbohydrate is proposed to have a distinct binding site on the sperm cell surface. To determine the role of the scaffold structure in the efficiency of AE induction, different polymer backbones were employed to display the different activating sugar residues. These glycopolymers were prepared by ruthenium-catalyzed ring-opening metathesis of 5-substituted norbornene or cyclooctene. The conformations of the glycopolymers were characterized by small-angle X-ray scattering. Polynorbornene displaying mannose, fucose, or GlcNAc forms flexible cylinders in aqueous solution. However, polycyclooctenes displaying any of these same sugars are much more flexible and form random coils. The flexible polycyclooctenes displaying fucose or GlcNAc were less effective inducers of AE than their norbornene counterparts. In contrast, polycyclooctene displaying mannose was the most effective AE inducer and had a more collapsed spherelike structure. Our results suggest that the AE efficacy of fucose, GlcNAc, and mannose polymers relies on a relatively rigid polymer that can stabilize receptor signaling complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464008PMC
http://dx.doi.org/10.1021/acs.biochem.7b00166DOI Listing

Publication Analysis

Top Keywords

fucose glcnac
16
sperm acrosomal
12
displaying mannose
12
mouse sperm
8
acrosomal exocytosis
8
sugar residues
8
mannose fucose
8
glcnac effective
8
polycyclooctenes displaying
8
sperm
5

Similar Publications

Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.

View Article and Find Full Text PDF

The oral pathogen, Porphyromonas gingivalis has a general O-glycosylation system which it utilises to modify hundreds of proteins localised outside of the cytoplasm. The O-glycan is a heptasaccharide that includes a putative L-fucose and N-acetylgalactosamine (GalNAc) as the 5th and 6th sugar residues respectively. The putative L-fucose is expected to be synthesized as GDP-L-fucose involving the enzymes Gmd (PGN_1078) and Fcl (PGN_1079), while GalNAc is putatively epimerised from GlcNAc by GalE (PGN_1614).

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity.

View Article and Find Full Text PDF

N-glycans with complex core chitobiose modifications are observed in various free-living and parasitic nematodes but are absent in mammals. Using Caenorhabditis elegans as a model, we demonstrated that the core N-acetylglucosamine (GlcNAc) residues are modified by three fucosyltransferases (FUTs), namely FUT-1, FUT-6, and FUT-8. Interestingly, FUT-6 can only fucosylate N-glycans lacking the α1,6-mannose upper arm, indicating that a specific α-mannosidase is required to generate substrates for subsequent FUT-6 activity.

View Article and Find Full Text PDF

Cellular adaptations to change often involve post-translational modifications of nuclear and cytoplasmic proteins. An example found in protists and plants is the modification of serine and threonine residues of dozens to hundreds of nucleocytoplasmic proteins with a single fucose (O-Fuc). A nucleocytoplasmic O-fucosyltransferase (OFT) occurs in the pathogen , the social amoeba , and higher plants, where it is called Spy because mutants have a spindly appearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!