Self-assembled monolayers (SAMs) on Au(111) are able to control the functionality of a gold surface. We use scanning tunnelling microscopy (STM) in air and contact angle measurements to compare the morphology and the chemistry of three alkylthiol SAMs differing by their tail groups: 1,9-nonanedithiol (NDT), 1,4-butanedithiol (BDT) and 11-mercaptoundecanol (MUOH). STM reveals very different morphologies: a hexagonal lattice for MUOH and parallel rows for NDT and BDT. In the case of NDT, we find that the thiol tail groups may form disulfide bridges with long immersion times. The availability of the -SH group for chemical reactions is demonstrated by attaching gold nanoparticles (AuNPs). When the thiol tail group is available, AuNPs readily attach as shown with atomic force microscopy (AFM). When disulfide bridges are formed, the gold surface is not able to bind nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa6e3dDOI Listing

Publication Analysis

Top Keywords

tail groups
12
self-assembled monolayers
8
attaching gold
8
gold nanoparticles
8
gold surface
8
thiol tail
8
disulfide bridges
8
alkylthiol self-assembled
4
monolayers au111
4
au111 tailored
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!