A complex of closely related Mallomonas taxa belonging to the section Papillosae, M. kalinae Řezáčová and M. rasilis Dürrschmidt, has been studied in detail by molecular and morphometric methods. Our investigations uncovered the existence of a new species found in water bodies in Vietnam, which we describe here as Mallomonas furtiva sp. nov. This taxon is morphologically very similar to M. kalinae, from which it differs by minute, but statistically significant morphological differences on the structure of silica scales. Indeed, the principal component analysis of morphological traits measured on silica scales significantly separates all three species in the complex. Mallomonas kalinae and M. furtiva differ by number of papillae on the shield and the dome, as well as by the scale sizes. Likewise, Mallomonas rasilis and M. furtiva are primarily differentiated by the absence of submarginal anterior ribs on silica scales of the former species. Phylogenetic analyses showed that Mallomonas furtiva is closely related to M. kalinae, with which it formed a highly supported lineage. Distribution patterns of all three studied taxa are further discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jeu.12427 | DOI Listing |
Nat Commun
December 2024
Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.
View Article and Find Full Text PDFAdv Mater
December 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
The development of novel methods to enhance enzyme-carrier interactions in situ, at a feasible cost, and on a large scale is crucial for improving the stability and durability of current immobilized enzyme systems used in industrial settings. Here, a pioneering approach termed "silica-based inorganic glue" is proposed, which utilizes protein-catalyzed silicification to fix enzyme within porous matrix while preserving enzyme activity. This innovative strategy offers several key benefits, including conformational stabilization of enzymes, improved interactions between enzymes and the matrix, prevention of enzyme leakage, and mitigation of pore blocking.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.
View Article and Find Full Text PDFPLoS One
December 2024
Key Laboratory of Intelligent Construction and Maintenance of CAAC, Xi'an, Shaanxi, China.
This study aimed to investigate the influence of different coarse aggregate mineral compositions on the skid resistance performance of asphalt pavement. The imprint method was utilized to assess the contact probability between various graded asphalt surface aggregates and tires. Additionally, macroscopic adhesive friction coefficients between polished surfaces of three types of rock slabs (basalt, limestone, granite) and rubber were determined using a pendulum friction tester.
View Article and Find Full Text PDFMalar J
December 2024
Institute of Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany.
Background: Molecular methods play an important role in clinical trials assessing anti-malarial drugs and vaccines, as well as in epidemiological studies aimed at detecting Plasmodium species, especially when dealing with large sample sizes. Molecular techniques are more sensitive and generally have a higher throughput compared to the gold standard microscopy. Further optimization can be achieved with automation of nucleic acid isolation, allowing for rapid and precise extraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!