Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is an urgent demand to develop earth-abundant electrocatalysts for efficient and durable water oxidation under mild conditions. A nickel-substituted cobalt-borate nanowire array is developed on carbon cloth (Ni-Co-Bi/CC) via oxidative polarization of NiCo S nanoarray in potassium borate (K-Bi). As a bimetallic electrocatalyst for water oxidation, such Ni-Co-Bi/CC is superior in catalytic activity and durability in 0.1 m K-Bi (pH: 9.2), with a turnover frequency of 0.33 mol O s at the overpotential of 500 mV and nearly 100% Faradaic efficiency. To drive a geometrical catalytic current density of 10 mA cm , it only needs overpotential of 388 mV, 34 mV less than that for Co-Bi/CC, outperforming reported non-noble-metal catalysts operating under benign conditions. Notably, its activity is maintained over 80 000 s. Density functional theory calculations suggest that the O* to OOH* conversion is the rate-determining step and Ni substitution decreases the free energy on Co-Bi from 2.092 to 1.986 eV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201700394 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!