The Human Genome Project in 2003 has resulted in the complete sequence of ~99% of the human genome paving the road for the Human Proteome Project (HPP) assessing the full characterization of the translated protein map of the 20,300 protein-coding genes. Consequently, the emerging of the proteomics field has successfully been adopted as the method of choice for the proteome characterization. Proteomics is a term that is used to encompass multidisciplinary approaches combining different technologies that aim to study the entire spectrum of protein changes at a specific physiological condition. Proteomics research has shown excellent outcomes in different fields, among which is neuroscience; however, the complexity of the nervous systems necessitated the genesis of a new subdiscipline of proteomics termed as "neuroproteomics." Neuroproteomics studies involve assessing the quantitative and qualitative aspects of nervous system components encompassing global dynamic events underlying various brain-related disorders ranging from neuropsychiatric disorders, degenerative disorders, mental illness, and most importantly brain-specific neurotrauma-related injuries. In this introductory chapter, we will provide a brief historical perspective on the field of neuroproteomics. In doing so, we will highlight on the recent applications of neuroproteomics in the areas of neurotrauma, an area that has benefitted from neuroproteomics in terms of biomarker research, spatiotemporal injury mechanism, and its use to translate its findings from experimental settings to human translational applications. Importantly, this chapter will include some recommendation to the general studies in the area of neuroproteomics and the need to move from this field from being a descriptive, hypothesis-free approach to being an independent mature scientific discipline.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-6952-4_1 | DOI Listing |
J Neurochem
January 2025
Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.
View Article and Find Full Text PDFJ Proteomics
January 2025
Necker Proteomics, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France.
Despite numerous studies on fetal therapy for myelomeningoceles (MMC), the pathophysiology of this malformation remains poorly understood. This study aimed to analyze the biochemical profile and proteome of amniotic fluid (AF) supernatants from MMC fetuses to explore the prenatal pathophysiology. Biochemical analysis of 61 AF samples from MMC fetuses was compared with 45 healthy fetuses' samples.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
Brain
December 2024
Lab of Parkinson's & Other Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona; Institut de Neurociències, Universitat de Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) CB06/05/0018-ISCIII; ES 08036 Barcelona, Spain.
Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for LRRK2-associated Parkinson's disease (L2PD) and idiopathic PD (iPD). However, pharmaco-dynamic readouts and progression biomarkers for clinical trials aiming for disease modification are insufficient since no endogenous marker reflecting enhanced kinase activity of the most common LRRK2 G2019S mutation has been reported yet in L2PD patients. Employing phospho-/proteomic analyses we assessed the impact that LRRK2 activating mutations had in peripheral blood mononuclear cells (PBMCs) from a LRRK2 clinical cohort from Spain (n=174).
View Article and Find Full Text PDFNeurology
January 2025
From the Perioperative, Acute, Critical Care and Emergency Medicine (PACE) (D.P.W., D.M., V.F.J.N.), Department of Medicine, University of Cambridge, Addenbrooke's Hospital; Division of Psychology (L.W.), University of Stirling, United Kingdom; Department of Neurosurgery (E.C.), Medical School, and Neurotrauma Research Group (E.C.), Szentagothai Research Centre, University of Pecs, Hungary; Department of Neurosurgery (A.B.), Faculty of Medicine and Health, Örebro University, Sweden; Department of Neurobiology (K.K.W.W.), Center for Neurotrauma, Multiomics & Biomarkers (CNMB) Neuroscience Institute, Morehouse School of Medicine (MSM), Atlanta, GA; Program for Neurotrauma, Neuroproteomics and Biomarker Research (K.K.W.W.), Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville; Institute of Psychology (N.v.S., M.Z.), University of Innsbruck; Faculty of Psychotherapy Science (M.Z.), Sigmund Freud University, Vienna, Austria; Department of Biomedical Data Sciences (E.S.), Leiden University Medical Center, the Netherlands; Department of Neurosurgery (A.I.R.M.), Antwerp University Hospital, Edegem; and Department of Translational Neuroscience (A.I.R.M.), Faculty of Medicine and Health Science, University of Antwerp, Belgium.
Background And Objectives: There is seemingly contradictory evidence concerning relationships between day-of-injury biomarkers and outcomes after mild traumatic brain injury (mTBI). To address this issue, we examined the association between a panel of biomarkers and multidimensional TBI outcomes.
Methods: Participants with mTBI (Glasgow coma scores [GCSs] 13-15) were selected from Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury, a European observational study recruiting patients with TBI with indication for brain CT and presentation within 24 hours.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!