Sendai virus (SeV) is a non-segment negative-sense RNA virus that naturally infects and causes pneumonia in mice. As a prototypic member of the family Paramyxoviridae, SeV has been characterized well, and these studies revealed numerous traits of paramyxovirus biology. The reverse genetics system to rescue SeV was first established in 1995. The virus was rescued from a cloned cDNA that contains full genome sequence flanked by T7 promoter and hepatitis delta virus ribozyme. To rescue SeV, it is necessary to infect cells with a recombinant vaccinia virus vTF7.3 that expresses T7 RNA polymerase, and transfect with the SeV full genome cDNAs together with supporting plasmids encoding NP, P, and L genes under the T7 promoter. Synthesized viral RNA by T7 RNA polymerase will be encapsidated with NP and associated with a polymerase complex composed of P and L. The polymerase complex transcribes and replicates the genome, and produces progeny virions. Rescued SeV needs to be plaque purified to exclude vTF7.3 from viral stock. Reverse genetics system of SeV is relatively efficient compared to other paramyxoviruses, but alternative approaches to rescue poorly growing mutant viruses are also available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-6964-7_7 | DOI Listing |
Stem Cell Res
January 2025
Department of Urology, Jinshan Hospital of Fudan University, Shanghai, China. Electronic address:
Prostate cancer (PCa) is the most common malignant tumor of the male reproductive system. In this study, we establish an induced pluripotent stem cell (iPSC) line from a male diagnosed with PC. of This iPSCs line was generated from the peripheral blood mononuclear cells (PBMCs) using a non-integrated Sendai virus.
View Article and Find Full Text PDFMolecules
January 2025
Center for Instrumental Analysis, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
[...
View Article and Find Full Text PDFStem Cells Int
January 2025
Biobanking Department, Coriell Institute for Medical Research, Camden 08003, New Jersey, USA.
Since their discovery, human induced pluripotent stem cells (hiPSCs) have been instrumental in biomedical research, particularly in the fields of disease modelling, drug screening and regenerative therapies. Their use has significantly increased over recent years driven by the ability of hiPSCs to provide differentiated cell models without requiring embryonic stem cells. Furthermore, the transition from integrating to non-integrating reprogramming methodologies has contributed to the increase in utilisation.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan.
Enveloped viruses have caused the majority of epidemics and pandemics over the past decade. Direct sensing of virus particles (virions) holds great potential for the functional analysis of enveloped viruses. Here, we explore a series of viral membrane-targeting amphipathic helical (AH) peptide-based molecular probes for the assessment of infectious titers of the human coronavirus 229E virus (HCoV-229E).
View Article and Find Full Text PDFCommun Biol
January 2025
Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!