Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28-32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5-7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120940PMC
http://dx.doi.org/10.1007/978-1-4939-6964-7_5DOI Listing

Publication Analysis

Top Keywords

reverse genetic
8
genetic manipulation
8
emergent preemergent
8
covs
6
genome
6
genetic
5
efficient reverse
4
genetic systems
4
systems rapid
4
rapid genetic
4

Similar Publications

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated.

View Article and Find Full Text PDF

Background: As the prevalence of osteoporotic fractures increases, impacting the health of the aging population significantly, understanding the genetic link between chronic diseases such as primary biliary cholangitis (PBC) and osteoporosis (OP) is crucial. Despite existing research, the direct genetic relationship between these conditions remains unclear.

Materials And Methods: This study used a two-sample Mendelian randomization approach, drawing on the largest available genome-wide association studies.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain.

View Article and Find Full Text PDF

Introduction: Gastric cancer (GC) is the fifth most common cancer globally, and the relationship between type 2 diabetes mellitus (T2DM) and cancer risk remains controversial.

Methods: We performed Mendelian randomization (MR) analysis using publicly available GWAS data to assess the causal relationship between T2DM and GC, validated by heterogeneity and pleiotropy analyses. Transcriptomic data from TCGA and GEO were analyzed to identify common differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!