Copper-catalyzed direct alkylation of heteroarenes.

Chem Sci

Laboratoire de Chimie Organique , Service de Chimie et PhysicoChimie Organiques , Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 , 1050 Brussels , Belgium . Email:

Published: May 2017

An efficient and broadly applicable process is reported for the direct alkylation of C-H bonds in heteroarenes, privileged scaffolds in many areas of science. This reaction is based on the copper-catalyzed addition of alkyl radicals generated from activated secondary and tertiary alkyl bromides to a wide range of arenes, including furans, thiophenes, pyrroles, and their benzo-fused derivatives, as well as coumarins and quinolinones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5418647PMC
http://dx.doi.org/10.1039/c6sc05622aDOI Listing

Publication Analysis

Top Keywords

direct alkylation
8
copper-catalyzed direct
4
alkylation heteroarenes
4
heteroarenes efficient
4
efficient broadly
4
broadly applicable
4
applicable process
4
process reported
4
reported direct
4
alkylation c-h
4

Similar Publications

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.

View Article and Find Full Text PDF

Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A-DA'D-A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C-H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients.

View Article and Find Full Text PDF

Synthesis of Alkyl α-Amino-benzylphosphinates by the Aza-Pudovik Reaction; The Preparation of the Butyl Phenyl--phosphinate Starting P-Reagent.

Molecules

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

Butyl phenyl--phosphinate that is not available commercially was prepared from phenyl--phosphinic acid by three methods: by alkylating esterification (i), by microwave-assisted direct esterification (ii), and unexpectedly, by thermal esterification (iii). Considering the green aspects, selectivity and scalability, the thermal variation seemed to be optimal. However, there was need for prolonged heating.

View Article and Find Full Text PDF

The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).

View Article and Find Full Text PDF

The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!