Poly(amino acid)-coated gold nanoparticles hold promise in biomedical applications, particularly because they combine the unique physicochemical properties of the gold core, excellent biocompatibility, and easy functionalization of the poly(amino acid)-capping shell. Here we report a novel method for the preparation of robust hybrid core-shell nanosystems consisting of a Au cluster and a densely grafted polylysine layer. Linear polylysine chains were grown by direct -carboxyanhydride (NCA) polymerization onto ligands capping the gold nanocluster. The density of the polylysine chains and the thickness of the polymer layer strongly depend on the amount and concentration of the NCA monomer and the initiator. The optical spectra of the so-obtained core-shell nanosystems show a strong surface plasmon resonance (SPR)-like band at 531 nm. In fact, despite maintenance of the gold cluster size and the absence of interparticle aggregation, the polylysine-capped clusters behave as if they have a diameter nearly 4 times larger. To the best of our knowledge, this is the first observation of the growth of a fully developed, very stable SPR-like band for a gold nanocluster of such dimensions. The robust polylysine protective shell makes the nanoparticles very stable under conditions of chemical etching, in the presence of glutathione, and at different pH values, without gold core deshielding or alteration of the SPR-like band. This polymerization method can conceivably be extended to prepare core-shell nanosystems based on other mono- or co-poly(amino acids).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5414598PMC
http://dx.doi.org/10.1039/c6sc05187aDOI Listing

Publication Analysis

Top Keywords

core-shell nanosystems
12
spr-like band
12
gold core
8
polylysine chains
8
gold nanocluster
8
gold
6
polylysine-grafted nanoclusters
4
nanoclusters birth
4
birth growth
4
growth healthy
4

Similar Publications

In this paper, we present a facile yet effective method for the fabrication of core-shell nanoparticles (NPs) of magnetite (FeO) and polydopamine (FeO@PDA) and their decoration with a tunable amount of gold NPs (AuNPs). For this, FeO NPs were fabricated through the polyol method and AuNPs were deposited onto FeO@PDA via anchoring of as-prepared citrate-stabilized AuNPs or reduction of Au ions. PDA with its numerous catechol groups enabled the decoration of AuNPs in a well-controlled manner.

View Article and Find Full Text PDF

Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).

View Article and Find Full Text PDF

Scalable Production of Metal Oxide Nanoparticles for Optoelectronics Applications.

Chemistry

November 2024

Functional Nanosystems, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.

This work describes the scalability process of a continuous-injection protocol employed to produce tin-doped indium oxide nanocrystal dispersions. Different levels of manipulation starting from the synthesis and processing also related to the tuning of the optical response (considering the peculiar combination of UV and NIR absorption with visible transparency) make these materials incredibly versatile. But one of the most attractive features concern the modulation of their charge carrier density through chemical or post-synthetic doping, as for the case of core-shell materials, expanding the properties of the core composition.

View Article and Find Full Text PDF

This study addresses the inherent photocatalytic activity of pure titanium dioxide (TiO), which limits its application as an industrial pigment. To mitigate this issue, a core-shell structure was employed, where TiO cores were encapsulated within SiO shells. Perhydropolysilazane (PHPS) was introduced as a superior SiO precursor over tetraethylorthosilicate (TEOS), resulting in thinner and more uniform SiO shells.

View Article and Find Full Text PDF

Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy.

Nanomaterials (Basel)

October 2024

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.

The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!