CLN diseases are rare lysosomal storage diseases characterized by progressive axonal degeneration and neuron loss in the CNS, manifesting in disability, blindness, and premature death. We have previously demonstrated that, in animal models of infantile and juvenile forms of CLN disease (CLN1 and CLN3, respectively), secondary neuroinflammation in the CNS substantially amplifies neural damage, opening the possibility that immunomodulatory treatment might improve disease outcome. First, we recapitulated the inflammatory phenotype, originally seen in mice in autopsies of CLN patients. We then treated mouse models of CLN1 and CLN3 disease with the clinically approved immunomodulatory compounds fingolimod (0.5 mg/kg/day) and teriflunomide (10 mg/kg/day) by consistent supply in the drinking water for 5 months. The treatment was well tolerated and reduced T cell numbers and microgliosis in the CNS of both models. Moreover, axonal damage, neuron loss, retinal thinning, and brain atrophy were substantially attenuated in both models, along with reduced frequency of myoclonic jerks in Ppt1 mice. Based on these findings, and because side effects were not detected, we suggest that clinically approved immune modulators such as fingolimod and teriflunomide may be suitable to attenuate progression of CLN1 and CLN3 disease and, possibly, other orphan diseases with pathogenically relevant neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542710 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2017.04.021 | DOI Listing |
Introduction: CLN8-Batten disease is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 result in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subtypes of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype.
View Article and Find Full Text PDFMol Vis
November 2024
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab. Beijing, China.
Purpose: The neuronal ceroid lipofuscinoses (NCLs) comprise a group of inherited neurodegenerative disorders with thirteen NCL-disease causing genes ceroid lipofuscinosis neuronal ( identified. The purpose of this study was to describe the genetic and clinical characteristics of a cohort of Chinese patients harboring biallelic variants in the genes.
Methods: We recruited 14 patients from 13 unrelated families who carried biallelic variants in the genes.
Genetics
July 2024
Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
Protein synthesis underpins cell growth and controls when cells commit to a new round of cell division at a point in late G1 of the cell cycle called Start. Passage through Start also coincides with the duplication of the microtubule-organizing centers, the yeast spindle pole bodies, which will form the 2 poles of the mitotic spindle that segregates the chromosomes in mitosis. The conserved Mps1p kinase governs the duplication of the spindle pole body (SPB) in Saccharomyces cerevisiae.
View Article and Find Full Text PDFPediatr Neurol
March 2024
Division of Neurology, Nationwide Children's Hospital, Nationwide Children's Hospital Batten Disease Center for Excellence, The Ohio State University, Columbus, Ohio.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!