Background Aims: Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 has demonstrated remarkable success in targeting B-cell malignancies but is often complicated by serious systemic toxicity in the form of cytokine release syndrome (CRS). CRS symptoms are primarily mediated by interleukin 6 (IL-6), and clinical management has focused on inhibition of IL-6 signaling. The cellular source and function of IL-6 in CRS remain unknown.
Methods: Using co-culture assays and data from patients on our clinical CAR T-cell trials, we investigated the cellular source of IL-6, as well as other CRS-associated cytokines, during CAR T-cell activation. We also explored the effect that IL-6 has on T-cell function.
Results: We demonstrated that IL-6 is secreted by monocyte-lineage cells in response to CAR T-cell activation in a contact-independent mechanism upon T-cell engagement of target leukemia. We observed that the presence of antigen-presenting cell-derived IL-6 has no impact on CAR T-cell transcriptional profiles or cytotoxicity. Finally, we confirm that CAR T cells do not secrete IL-6 in vivo during clinical CRS.
Discussion: These findings suggest that IL-6 blockade will not affect CD19 CAR T-cell-driven anti-leukemic cytotoxicity, permitting enhanced control of CRS while maintaining CAR T-cell efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676485 | PMC |
http://dx.doi.org/10.1016/j.jcyt.2017.04.001 | DOI Listing |
Mol Ther
January 2025
Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China; Shenzhen University-Haoshi Cell Therapy Institute, Shenzhen, China. Electronic address:
Pancreatic cancer (PC) is one of the most lethal digestive system tumors. Claudin18.2 is highly expressed in PC tissue and could serve as a suitable target for CAR-T therapy.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
The treatment of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-cell ALL) has seen substantial progress over the past two decades. The introduction of tyrosine kinase inhibitor (TKIs) has resulted in dramatic improvements in long-term survival. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), with its curative potential, has always been an integral part of the treatment algorithm of Ph+ ALL.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy.
Backgroud: The introduction of highly active immunotherapies has changed the outcome of B-cell non-Hodgkin lymphomas (B-NHLs) in the last two decades. Since then, important progress has been shown using newer and more active immunotherapies, including chimeric antigen receptor T-cell therapy (CAR-T), conjugated monoclonal antibodies, and bispecific antobodies, which currently plays a significant role in the treatment of diffuse large B-cell (DLBCL), follicular (FL), and mantle cell (MCL) lymphoma.
Purpose: In this review, we provide an updated overview of recently completed and ongoing BsAb trials in patients with relapsed/refractory(R/R) B-NHL and Hodgkin's lymphoma, including single-agent results, emerging combinations, safety data, and novel constructs.
Cancers (Basel)
December 2024
Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany.
Background: Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative modality in the treatment of patients with cancer. However, it is increasingly evident that this therapeutic approach is not without its challenges. The unique nature of CAR-T cells as living drugs introduces a distinct set of side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!