Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1466252317000019 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Hannover Medical School, Institute of Pharmacology, D-30625, Hannover, Germany.
The increasing supply shortages of antibacterial drugs presents significant challenges to public health in Germany. This study aims to predict the future consumption of the ten most prescribed antibacterial drugs in Germany up to 2040 using ARIMA (Auto Regressive Integrated Moving Average) models, based on historical prescription data. This analysis also evaluates the plausibility of the forecasts.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, P.O. Box 9086, Addis Ababa, Ethiopia.
Bacterial infections commonly complicate cutaneous leishmaniasis (CL), worsening the disease and delaying healing. Despite this, there is a gap in research concerning the characteristics of pathogenic microorganisms associated in CL patients. This study aims to identify bacterial isolates and drug susceptibility patterns in CL patients.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Background: In clinical practice, the emergence of ST11-K64 carbapenem-resistant Klebsiella pneumoniae (ST11-K64 CRKP) has become increasingly alarming. Despite this trend, limited research has been conducted to elucidate the clinical and molecular characteristics of these strains.
Objectives: This study aimed to comprehensively investigate the clinical characteristics, antimicrobial resistance patterns, resistance and virulence-associated genes, and molecular epidemiology of ST11-K64 CRKP in Southwest China.
Probiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
Soil is one of the most important reservoirs of antibiotic resistance, global threat that needs to be addressed with the One Health approach. Despite urban parks playing a fundamental role in urban ecosystems, the diffusion, maintenance, and human impact of antibiotic-resistance genes in this substrate are still poorly addressed. To fill in this gap, we adopted a molecular and culturomics approach to study antibiotic resistance in urban parks, accounting for the environmental matrix and the level of urbanization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!