Molecular dynamics (MD) simulations were used to predict the wetting behavior of materials typical of active and hole-transport layers in organic electronics by evaluating their contact angles and adhesion energies. The active layer (AL) here consists of a blend of poly(3-hexylthiophene) and phenyl-C-butyric acid methyl ester (P3HT:PCBM), whereas the hole-transport layer (HTL) consists of a blend of poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate) (PEDOT:PSS). Simulations of the wetting of these surfaces by multiple solvents show that formamide, glycerol, and water droplet contact angle trends correlate with experimental values. However, droplet simulations on surfaces are computationally expensive and would be impractical for routine use in printed electronics and other applications. As an alternative, contact angle measurements can be related to adhesion energy, which can be calculated more quickly and easily from simulations and has been shown to correlate with contact angles. Calculations of adhesion energy for 16 different solvents were used to rapidly predict the wetting behavior of solvents on the AL and HTL surfaces. Among the tested solvents, pentane and hexane exhibit low and similar adhesion energy on both of the surfaces considered. This result suggests that among the tested solvents, pentane and hexane exhibit strong potential as orthogonal solvent in printing electronic materials onto HTL and AL materials. The simulation results further show that MD can accelerate the evaluation of processing parameters for printed electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b14786 | DOI Listing |
Biomimetics (Basel)
January 2025
DENS-ia Research Group, Faculty of Health Sciences, Miguel de Cervantes European University, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain.
Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment).
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Superhydrophobic coatings are beneficial for applications like self-cleaning, anti-corrosion, and drag reduction. In this study, we investigated the impact of surface geometry on the static, dynamic, and sliding contact angles in the Cassie-Baxter state. We used fluoro-silane-treated silicon micro-post patterns fabricated via lithography as model surfaces.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
Droplets impinging on sparse microgrooved polydimethylsiloxane (PDMS) surfaces with different solid fractions was experimentally investigated. First, wettability and stability of droplets on these surfaces was analyzed. The advancing and receding contact angles were found to have a large difference between in the longitudinal direction and in the transverse one, which could be attributed to the anisotropy of the micropatterned surfaces.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, SRM University AP Andhra Pradesh, Mangalagiri, Andhra Pradesh 522502, India.
This article reports facile fabrication of a multifunctional smart surface having superhydrophobic self-cleaning property, superoleophilicity, and antimicrobial property. These smart surfaces have been synthesized using the stereolithography (SLA) method of the additive manufacturing technique. SLA is a fast additive manufacturing technique used to create complex parts with intricate geometries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!