The muscarinic M$_{2}$ receptor is a prominent member of the GPCR family and strongly involved in heart diseases. Recently published experimental work explored the cellular response to iperoxo-induced M$_{2}$ receptor stimulation in Chinese hamster ovary (CHO) cells. To better understand these responses, we modelled and analysed the muscarinic M$_{2}$ receptor-dependent signalling pathway combined with relevant secondary messenger molecules using mass action. In our literature-based joint signalling and secondary messenger model, all binding and phosphorylation events are explicitly taken into account in order to enable subsequent stoichiometric matrix analysis. We propose constraint flux sampling (CFS) as a method to characterize the expected shift of the steady state reaction flux distribution due to the known amount of cAMP production and PDE4 activation. CFS correctly predicts an experimentally observable influence on the cytoskeleton structure (marked by actin and tubulin) and in consequence a change of the optical density of cells. In a second step, we use CFS to simulate the effect of knock-out experiments within our biological system, and thus to rank the influence of individual molecules on the observed change of the optical cell density. In particular, we confirm the relevance of the protein RGS14, which is supported by current literature. A combination of CFS with Elementary Flux Mode analysis enabled us to determine the possible underlying mechanism. Our analysis suggests that mathematical tools developed for metabolic network analysis can also be applied to mixed secondary messenger and signalling models. This could be very helpful to perform model checking with little effort and to generate hypotheses for further research if parameters are not known.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/imammb/dqx003 | DOI Listing |
Protein Sci
February 2025
Department of Physics, University of Washington, Seattle, Washington, USA.
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.
View Article and Find Full Text PDFViruses
December 2024
Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA.
The nucleocapsid (N) protein is the most expressed protein in later stages of SARS-CoV-2 infection with several important functions. It is translated from a subgenomic mRNA (sgmRNA) formed by template switching during transcription. A recently described translation initiation site (TIS) with a CTG codon in the leader sequence (TIS-L) is out of frame with most structural and accessory genes including the N gene and may act as a translation suppressor.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Agricultural, Food and Environmental Sciences, University of Perugia, via Borgo XX giugno 74, Perugia, 06121, Italy.
Whole genome duplication (WGD) is a powerful evolutionary mechanism in plants. Autopolyploids have been comparatively less studied than allopolyploids, with sexual autopolyploidization receiving even less attention. In this work, we studied the transcriptomes of neotetraploids (2n = 4x = 32) obtained by crossing two diploid (2n = 2x = 16) plants of Medicago sativa that produce a significant percentage of either 2n eggs or pollen.
View Article and Find Full Text PDFBreast J
January 2025
Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
Collagen type XI alpha 1 (COL11A1), a critical member of the collagen superfamily, is essential for tissue structure and integrity. This study aimed to validate previously identified variations in COL11A1 expression during breast cancer carcinogenesis and progression, as well as elucidate their clinical implications. COL11A1 mRNA expression levels were assessed using real-time reverse transcription-PCR (RT-PCR) in 30 pairs of normal breast tissue and primary breast cancer, 30 pairs of primary breast cancer and lymph node metastases, 30 benign tumors, and 107 primary breast cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!