VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug.

Oncogene

Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.

Published: September 2017

Cancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis. We show Sox2 downregulates miR-452, which acts as a novel metastasis suppressor to directly target the SNAI2 3'-untranslated region (3'-UTR). VEGFA stimulates Sox2- and Slug-dependent cell invasion. VEGFA increases lung metastasis in vivo, and this is abrogated by miR-452 overexpression. Furthermore, SNAI2 transduction rescues metastasis suppression by miR-452. Thus, in addition to its angiogenic action, VEGFA upregulates Sox2 to drive stem cell expansion, together with miR-452 loss and Slug upregulation, providing a novel mechanism whereby cancer stem cells acquire metastatic potential. Prior work showed EMT transcription factor overexpression upregulates CSC. Present work indicates that stemness and metastasis are a two-way street: Sox2, a major mediator of CSC self-renewal, also governs the metastatic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596211PMC
http://dx.doi.org/10.1038/onc.2017.4DOI Listing

Publication Analysis

Top Keywords

cancer stem
8
stem cells
8
metastatic potential
8
upregulates sox2
8
metastasis
7
vegfa
6
sox2
6
mir-452
5
vegfa links
4
links self-renewal
4

Similar Publications

Herpes simplex virus (HSV) infection is one of the most prevalent viral infections worldwide. In general, host immunity is sufficient to clear viral shedding and recurrences, although it is insufficient to prevent subsequent virologic reactivations. In immunocompromised patients, prolonged and difficult-to-treat HSV infections may develop.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

The severity of COVID 19 symptoms has a direct correlation with lymphopenia, affecting natural killer (NK) cells. SARS-CoV-2 specific "memory" NK cells obtained from convalescent donors can be used as cell immunotherapy. In 2022 a phase I, dose-escalation, single center clinical trial was conducted to evaluate the safety and feasibility of the infusion of CD3/CD56 NK cells against moderate/severe cases of COVID-19 (NCT04578210).

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders commonly characterized by excessive production of blood cell lineages. The JAK2 V617F mutation plays a crucial role in the pathogenesis of these conditions, often leading to thrombotic complications. Here, we present the case of a 21-year-old man who presented with acute abdominal pain and was found to have portal vein thrombosis with splenomegaly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!