Many studies have highlighted the immunomodulatory properties of the probiotic strain Lactobacillus casei BL23. Recently, we demonstrated the ability of this strain to modulate the Th2-oriented immune response in a mouse model of cow's milk allergy based on the induction of a Th17-biased immune response. The probiotic function of L. casei has been also linked to gut-microbiota modifications which could been potentially involved in the immune regulation; however, its precise mechanism of action remains poorly understood. In this regard, recent studies suggest that gut microbiota induces a specific subset of CD4+FoxP3+ Treg cells that also express RORγt+, the specific transcription factor of Th17 cells. This new type of regulatory T cells, called type 3 Treg, displays suppressive function during intestinal inflammation, participating in inflammation control. We thus explored the ability of L. casei BL23 to specifically induce type 3 Treg cells, both in vitro and in vivo. Our results showed that intragastric administration of L. casei BL23 to mice induces local and systemic FoxP3+ RORγt+ type 3 Treg cells that could then participate in the beneficial effects of L. casei BL23 in different intestinal-related disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3920/BM2016.0174 | DOI Listing |
J Appl Glycosci (1999)
May 2023
1 Research Faculty of Agriculture, Hokkaido University.
β-Galactosidase (EC 3.2.1.
View Article and Find Full Text PDFBiomedicines
May 2023
Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Immune responses are highly complex and intricately regulated processes involving immune and non-immune cells in close direct and indirect contact with each other. These cells are highly sensitive to environmental signals, including factors derived from microbiota. Here, we demonstrate that the human microbiota member ()-derived cell-free supernatant (CFS) enhances the sensitivity of mesenchymal-stromal-cell-like (MSCI) cells to viral stimuli and induces the development of dendritic cells (DCs) with anti-inflammatory and antiviral properties via pretreated MSCl cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2023
CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, PR China. Electronic address:
Up to date, the reported fucosidases generally show poor activities toward the IgG core-fucose, which limits the efficiency of ENGase-catalyzed glycoengineering process. However, EndoS or EndoS2 owns excellent activity and great selectivity towards the N-glycosylation of IgGs, and their non-catalytic domains are deduced to have specific interactions to IgG Fc domain that result in the great activity and selectivity. Herein, we constructed a series fusion protein of AlfC (an α-l-fucosidase from Lactobacillus casei BL23) with EndoS/S2 non-catalytic domain by replacing the catalytic GH (glycan hydrolase) domain of EndoS/S2 with the AlfC.
View Article and Find Full Text PDFSci Rep
January 2023
Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France.
Biofilms represent a major concern in the food industry and healthcare. The use of probiotic bacteria and their derivatives as an alternative to conventional treatments to fight biofilm development is a promising option that has provided convincing results in the last decades. Recently, membrane vesicles (MVs) produced by probiotics have generated considerable interest due to the diversity of roles they have been associated with.
View Article and Find Full Text PDFmBio
October 2022
University Bourgogne Franche-Comté (UBFC), Institut Agro Dijon, Dijon, France.
The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!