A new ribonucleotide from Cordyceps militaris.

Nat Prod Res

a Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education , Yanbian University College of Pharmacy, Yanji , P. R. China.

Published: November 2017

One new ribonucleotide, 5'-(3''-deoxy-β-D-ribofuranosyl)-3'-deoxyadenosine (1), and 14 known compounds (2-15) were isolated from an ethanol extract of Cordyceps militaris. The chemical structures of these compounds were determined from 1D and 2D NMR (H-H COSY, HMBC, HMQC and NOESY) and HR-ESI-MS spectra, and results were compared with data from the literature. The effects of all isolated compounds were measured on NF-κB activation, with compound 2 exhibiting significant inhibitory activity against TNF-α-induced NF-κB reporter gene expression in HeLa cells from 3 to 100 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2017.1323210DOI Listing

Publication Analysis

Top Keywords

cordyceps militaris
8
ribonucleotide cordyceps
4
militaris ribonucleotide
4
ribonucleotide 5'-3''-deoxy-β-d-ribofuranosyl-3'-deoxyadenosine
4
5'-3''-deoxy-β-d-ribofuranosyl-3'-deoxyadenosine compounds
4
compounds 2-15
4
2-15 isolated
4
isolated ethanol
4
ethanol extract
4
extract cordyceps
4

Similar Publications

Enhancing Cordyceps Sinensis shelf life: The role of liquid nitrogen spray freezing in maintaining hypha structure and reducing metabolic degradation.

Food Chem

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Cordyceps sinensis (C. sinensis) is a valuable edible fungus, known for its therapeutic benefits, including immune enhancement and anti-inflammatory effects, making it an important component in nutritional applications. However, its delicate nature makes long-term storage challenging, with conventional freezing often leading to the loss of bioactive compounds.

View Article and Find Full Text PDF

Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of .

J Fungi (Basel)

January 2025

State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China.

is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.

View Article and Find Full Text PDF

Polysaccharides produced by the edible fungus can regulate blood sugar levels and may represent a suitable candidate for the treatment of diabetes and its complications. However, there is limited information available about the mechanism of how polysaccharide (CCP) might improve diabetic conditions. This study investigated its effects on the intestinal microbiota, intestinal mucosal barrier, and inflammation in mice with type 2 diabetes mellitus (T2DM) induced by streptozotocin, and its potential mechanisms.

View Article and Find Full Text PDF

is a medicinal mushroom widely utilized in traditional East Asian medicine, recognized for its diverse therapeutic properties. This review explores the potential of -derived bioactive gels for applications in dermatology and skincare, with a particular focus on their therapeutic and anti-aging benefits. In response to the rising incidence of skin cancers and the growing demand for natural bioactive ingredients, has emerged as a valuable source of functional compounds, including cordycepin, polysaccharides, and adenosine.

View Article and Find Full Text PDF

Protective effects of against hepatocyte apoptosis and liver fibrosis induced by high palmitic acid diet.

Front Pharmacol

January 2025

Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Background: Fatty Liver Disease (FLD) progresses from steatosis to steatohepatitis and, if left untreated, can lead to irreversible conditions such as cirrhosis and hepatocarcinoma. The etiology of FLD remains unclear, but factors such as overconsumption, poor diet, obesity, and diabetes contribute to its development. Palmitic acid (PA) plays a significant role in FLD progression by inducing apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in hepatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!