Tissue hypoxia developed in most malignant tumors makes a significant difference to normal tissues in the reduction potential and the activity of various bioreductive enzymes. Given the superior enzymatic activity of NAD(P)H:quinone oxidoreductase 1 (NQO1, a cytosolic reductase up-regulated in many human cancers) in hypoxia relative to that in normoxia, NQO1 has great potential for targeting hypoxic tumor cells. In the present report, the core concept of hypoxic NQO1-responsive mesoporous silica nanoparticles (MSNs) is based on the reasoning that the superior enzymatic activity of NQO1 within hypoxic cancer cells can be utilized as a key stimulus for the selective cleavage of an azobenzene stalk triggering the on-off gatekeeping for controlled release of guest drugs. We corroborate that the NQO1 specifically triggers to release the entrapped drug in the nanochannel of MSNs by reductive cleavage of the azobenzene linker only under hypoxic conditions in a controlled manner not only in vitro but also in vivo. Therefore, our results indicate that Si-Azo-CD-PEG could be utilized as a hypoxic cancer-targeting drug delivery carrier, and further suggest that the azobenzene linker could generally be useful for the construction of hypoxic NQO1-responsive nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr00808bDOI Listing

Publication Analysis

Top Keywords

superior enzymatic
8
enzymatic activity
8
hypoxic nqo1-responsive
8
cleavage azobenzene
8
azobenzene linker
8
hypoxic
6
mesoporous nanocarriers
4
nanocarriers stimulus-responsive
4
stimulus-responsive cyclodextrin
4
cyclodextrin gatekeeper
4

Similar Publications

Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches.

View Article and Find Full Text PDF

Pollen and Stigma Morphology, Pollen Viability and Stigma Receptivity of Wittmackia Species (Bromeliaceae) by Light, Fluorescence and Scanning Electron Microscopy.

Microsc Res Tech

January 2025

Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.

The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.

View Article and Find Full Text PDF

, a traditional Miao medicine with significant clinical potential, is rich in polysaccharides. Despite its importance, there is a scarcity of research on the structure and activities of these polysaccharides. In this study, polysaccharides from (GJPs) were extracted using various methods, including heated reflux extraction (HRE), acidic extraction (ACE), alkaline extraction (AAE), microwave-assisted extraction (MAE), enzymatic extraction (EAE), pressurized liquid extraction (PLE), and deep eutectic solvents extraction (DESE).

View Article and Find Full Text PDF

Utilizing lignin-derived activated carbon in supercapacitors has emerged as a promising approach to alleviating environmental pollution and promoting the high-value utilization of byproducts in the papermaking industry. In this study, activated carbons (LACs) were prepared using a simple one-step KOH activation approach and by employing enzymatic hydrolysis lignin (EHL). The impact of the KOH activation parameters on the microstructure and capacitive performance of the LACs was investigated by varying the KOH/EHL ratio and activation temperature.

View Article and Find Full Text PDF

Study of the Effect of Methyl Eugenol on Gastric Damage Produced by Spinal Cord Injury Model in the Rat.

Molecules

December 2024

Laboratorio de Farmacología de Plantas Medicinales Mexicanas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico.

Traumatic spinal cord injury (SCI) is a serious medical condition that places patients at high risk of developing gastric ulceration and gastrointestinal bleeding. One preventative strategy involves the use of omeprazole; however, its chronic use is associated with adverse effects, highlighting the need for alternative therapies. This study evaluated the protective effects of methyl eugenol (ME) on gastric mucosal damage in a rat model of SCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!