Multiple endocrine neoplasia type 1 (MEN1) is a hereditary cancer syndrome caused by germline mutations of the gene located in chromosome 11q13. In patients with MEN1, multicentric tumors develop in the involved organs; however, precise evaluation of genetic changes in these multicentric tumors has not been performed. In the present study, using whole-exome sequencing, we analyzed germline and somatic genetic changes in blood cells, two pancreatic endocrine tumors and one duodenal tumor obtained from a patient with MEN1 gastrinoma. We found that this patient possessed a novel germline mutation of the gene [NM_137099.2:c.1505dupA (p.Lys502Lysfs); the localization was Chr11:64572134 on Assembly GRCh37], in which an adenine insertion in codon 502 of the gene resulted in a frame shift and a premature stop codon. In terms of heterozygosity, the mutated allele was heterozygous in blood cells, hemizygous in the two pancreatic tumors and homozygous in the duodenal tumor. Immunohistochemical staining confirmed that only truncated menin protein accumulated in the nucleus of the tumor tissues. Further evaluation of tumor-specific somatic mutations in two pancreatic tumors did not detect single-nucleotide variations (SNVs) in 609 cancer-associated genes designated by the COSMIC cancer gene census, suggesting that the germline mutation and resultant loss of heterozygosity played a major role in tumorigenesis. In the duodenal tumor, in addition to the germline mutation, single-nucleotide variations in two cancer-associated genes were found. Further studies are required to clarify the role of these somatic single-nucleotide variations in the progression of MEN1 tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5406389PMC
http://dx.doi.org/10.1038/hgv.2017.13DOI Listing

Publication Analysis

Top Keywords

genetic changes
12
multicentric tumors
12
duodenal tumor
12
germline mutation
12
single-nucleotide variations
12
germline somatic
8
somatic genetic
8
changes multicentric
8
multiple endocrine
8
endocrine neoplasia
8

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Seed cycling therapy (SCT) involves the consumption of specific seeds during the follicular and luteal phases of the menstrual cycle to help balance reproductive hormones. This study aimed to investigate the effects of SCT on healthy female Wistar albino rats to prevent hormonal imbalances. For SCT, a seed mixture (SM1) consisting of flax, pumpkin, and soybeans (estrogenic seeds) was administered at doses of 5.

View Article and Find Full Text PDF

Every protein progresses through a natural lifecycle from birth to maturation to death; this process is coordinated by the protein homeostasis system. Environmental or physiological conditions trigger pathways that maintain the homeostasis of the proteome. An open question is how these pathways are modulated to respond to the many stresses that an organism encounters during its lifetime.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!