Background: The developmentally important DLK1-DIO3 imprinted domain on human chromosome 14 is regulated by 2 differentially methylated regions, the intergenic differentially methylated region and the MEG3 differentially methylated region.
Objective: The aim was to determine the natural variation in DNA methylation at these differentially methylated regions in human placentas, and to determine its link to gene expression levels at the domain. The second goal was to explore whether the domain's methylation and gene expression correlate with prenatal and early postnatal growth of the conceptus.
Study Design: Using pyrosequencing, we determined methylation levels at CpG dinucleotides across the 2 regulatory differentially methylated regions in placentas from 91 healthy mothers. At birth, placentas and infants were weighed (gestational age 39 ± 1 weeks; birthweight SD score 0.1 ± 0.8) and placental biopsies were collected. RNA expression was quantitated by real-time polymerase chain reaction. Infants' weights and lengths were followed up monthly during the first year.
Results: Methylation levels at the 2 regulatory differentially methylated regions were linked and varied considerably between placentas. MEG3 promoter differentially methylated region methylation correlated negatively with weight increase (β = -0.406, P = .001, R = 0.206) and length increase (β = -0.363, P = .002, R = 0.230) during the first postnatal year. The methylation level of the intergenic differentially methylated region correlated with DIO3 expression (β = 0.313, P = .032, R = 0.152). Furthermore, the expression of both DIO3 and RTL1 (both imprinted genes within the DLK1-DIO3 domain) was negatively associated with birthweight (β = -0.331, P = .002, R = 0.165; and β = -0.307, P = .005, R = 0.159, respectively). RTL1 expression, in addition, was negatively linked to birth length (β = -0.306, P = .007, R = 0.162).
Conclusion: Our combined findings strongly suggest that placental DNA methylation at the DLK1-DIO3 domain's intergenic differentially methylated region and MEG3 promoter differentially methylated region relates to measures of early human growth, and may thus contribute to its control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2017.05.002 | DOI Listing |
Geroscience
January 2025
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Int J Mol Sci
December 2024
Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the terpenoid biosynthesis pathway, responsible for converting isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) into farnesyl pyrophosphate (FPP). In crustaceans, FPPS plays an important role in various physiological processes, particularly in synthesizing the crustacean-specific hormone methyl farnesoate (MF). This study analyzed the evolutionary differences in the physicochemical properties, subcellular localization, gene structure, and motif composition of FPPS in (named NdFPPS) compared to other species.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Nanjing Agricultural University, Nanjing, 211800, China.
Background: Strawberry (Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!