Ketogenic diet leads to O-GlcNAc modification in the BTBR mouse model of autism.

Biochim Biophys Acta Mol Basis Dis

Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Department of Medical Science, University of Calgary Cumming School of Medicine, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary Cumming School of Medicine, Alberta Children's Hospital, AB, Canada.

Published: September 2017

AI Article Synopsis

  • The study investigates how a ketogenic diet (KD) affects O-linked-β-N-acetyl glucosamine (O-GlcNAc) patterns in a mouse model of autism spectrum disorder (BTBR).
  • The KD decreased global O-GlcNAc levels in the liver but did not change levels in the brain, suggesting tissue-specific effects of the diet.
  • Findings indicate that the KD may not confer therapeutic benefits in the BTBR model through O-GlcNAc pathways, as brain O-GlcNAc levels remained stable despite dietary changes.

Article Abstract

Background: Protein O-linked-β-N-acetyl glucosamine (O-GlcNAc) is a post-translational modification to Ser/Thr residues that integrates energy supply with demand. Abnormal O-GlcNAc patterning is evident in several neurological disease states including epilepsy, Alzheimer's disease and autism spectrum disorder (ASD). A potential treatment option for these disorders includes the high-fat, low-carbohydrate, ketogenic diet (KD). The goal of this study was to determine whether the KD induces changes in O-GlcNAc in the BTBR (BTBR) mouse model of ASD.

Methods: Juvenile male (5weeks), age-matched C57 or BTBR mice consumed a chow diet (13% kcal fat) or KD (75% kcal fat) for 10-14days. Following these diets, brain (prefrontal cortex) and liver were examined for gene expression levels of key O-GlcNAc mediators, global and protein specific O-GlcNAc as well as indicators of energy status.

Results: The KD reduced global O-GlcNAc in the livers of all animals (p<0.05). Reductions were likely mediated by lower protein levels of O-GlcNAc transferase (OGT) and increased O-GlcNAcase (OGA) (p<0.05). In contrast, no differences in global O-GlcNAc were noted in the brain (p>0.05), yet OGT and OGA expression (mRNA) were elevated in both C57 and BTBR animals (p<0.05).

Conclusions: The KD has tissue specific impacts on O-GlcNAc. Although levels of O-GlcNAc play an important role in neurodevelopment, levels of this modification in the juvenile mouse brain were stable with the KD despite large fluctuations in energy status. This suggests that it is unlikely that the KD exerts it therapeutic benefit in the BTBR model of ASD by O-GlcNAc related pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2017.05.013DOI Listing

Publication Analysis

Top Keywords

ketogenic diet
8
btbr mouse
8
mouse model
8
kcal fat
8
o-glcnac
7
diet leads
4
leads o-glcnac
4
o-glcnac modification
4
btbr
4
modification btbr
4

Similar Publications

Current treatment approaches for Autism spectrum disorder (ASD) primarily focus on symptom management rather than addressing underlying dysfunctions. The ketogenic diet (KD), a high-fat, low-carbohydrate diet inducing nutritional ketosis, has shown promise in treating epilepsy and may offer therapeutic benefits for ASD by modulating metabolic and neuroprotective pathways. This review examined the potential impact of KD on underlying mechanisms in ASD.

View Article and Find Full Text PDF

: The ketogenic diet (KD) is widely used for weight management by reducing appetite, enhancing fat oxidation, and facilitating weight loss. However, the high content of total and saturated fats in a conventional KD may elevate low-density lipoprotein (LDL)-cholesterol levels, a known risk factor for cardiovascular diseases, highlighting the need for healthier alternatives. This study aimed to investigate the effect of a newly developed Healthy Ketogenic Diet (HKD) versus an Energy-Restricted Diet (ERD) on weight loss and metabolic outcomes among adults with obesity.

View Article and Find Full Text PDF

: The ketogenic diet (KD) is a dietary model that can impact metabolic health and microbiota and has been widely discussed in recent years. This study aimed to evaluate the effects of a 6-week KD on biochemical parameters, gut microbiota, and fecal short-chain fatty acids (SCFAs) in women with overweight/obesity. : Overall, 15 women aged 26-46 years were included in this study.

View Article and Find Full Text PDF

Despite advances in pharmacological therapies, migraine patients are often drug resistant. Further therapeutic options in this field are, therefore, desirable. Recent studies have highlighted the efficacy of ketogenic diet (KD) on improving migraine, but data on their long-term efficacy and safety are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!