Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) produce a unique combination of molecules, which modulate important cellular functions of their target cells while concurrently suppressing their immune responses. These properties make MSCs advantageous candidates for cell-based therapy. Our first aim was to examine the effect of high levels of oxidative stress on pMSC functions. pMSCs were exposed to hydrogen peroxide (HO) and their ability to proliferate and adhere to an endothelial cell monolayer was determined. Oxidatively stressed pMSCs maintained their proliferation and adhesion potentials. The second aim was to measure the ability of pMSCs to prevent oxidative stress-related damage to endothelial cells. Endothelial cells were exposed to HO, then co-cultured with pMSCs, and the effect on endothelial cell adhesion, proliferation and migration was determined. pMSCs were able to reverse the damaging effects of oxidative stress on the proliferation and migration but not on the adhesion of endothelial cells. These data indicate that pMSCs are not only inherently resistant to oxidative stress, but also protect endothelial cell functions from oxidative stress-associated damage. Therefore, pMSCs could be used as a therapeutic tool in inflammatory diseases by reducing the effects of oxidative stress on endothelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2017.05.001 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: Oxidative stress prompts breast cancer cells to adapt by raising the lethal threshold and enhancing the antioxidant mechanism, thereby enabling survival and continuous proliferation that facilitates tumor progression. Nrf2 and 8-OHdG are indicative of oxidative stress activity and impact the progression of breast cancer. We aimed to analyze the expression of Nrf2 and 8-OHdG in various T stages of breast cancer in our hospital.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
Cystitis glandularis (CG) is a chronic hyperplastic disorder of the bladder, and the available clinical drug therapy is insufficient currently. Glycyrrhetinic acid (GA), a bioactive compound extracted from the roots of Glycyrrhiza glabra, is found with beneficial actions, including anti-inflammatory and anti-oxidative effects. We previously reported that GA relieves CG symptoms in animal model, implying the potential application of GA to treat CG.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!