AI Article Synopsis

  • The text discusses the discovery of a molecular rotor with exceptional sorption abilities despite lacking permanent voids in its crystal structure.
  • Key findings indicate that the presence of benzene molecules in its crystal lattice acts as a rotation stopper, impacting dynamic behavior and molecular movement.
  • The molecular rotor exhibited high uptake for carbon monoxide and acetone due to a combination of restricted rotation at low temperatures and the structural flexibility of its molecular axle.

Article Abstract

We report for the first time the high sorption properties of a molecular rotor with no permanent voids or channels in its crystal structure. Such crystalline phase originates from THF, DCM, or the irreversible desolvation of entrapped benzene molecules. From these, the benzene in its solvate form acts as rotation stopper, as supported by dynamic characterization using solid-state H NMR experiments. In the solvent-free form, the diffusion of small quantities of iodine vapors caused a significant change in the intramolecular rotation, increasing the known activation energy to rotation from 8.5 to 10.6 kcal mol. Notably, those results paved the way for the discovery of the high CO uptake (201.6 cm g at 196 K, under 1 atm) and acetone (5 wt %), a sorption property that was attributed to both, the restriction of the molecular rotation at low temperatures and the flexibility of the molecular axle made of conjugated p-(ethynylphenylene), surrounded by carbazole.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b02015DOI Listing

Publication Analysis

Top Keywords

acetone sorption
8
sorption properties
8
transient porosity
4
porosity densely
4
densely packed
4
packed crystalline
4
crystalline carbazole-p-diethynylphenylene-carbazole
4
carbazole-p-diethynylphenylene-carbazole rotors
4
rotors acetone
4
properties report
4

Similar Publications

Unveiling the Sorption Properties of Graphene Oxide-M13 Bacteriophage Aerogels for Advanced Sensing and Environmental Applications.

ACS Appl Mater Interfaces

December 2024

School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS).

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) are an ideal sorbent for magnetic dispersion extraction due to their superparamagnetic properties and developed and active surface. This work aims to use IONPs, obtained by chemical co-precipitation, to purify 100% acetone and 50% acetone extracts from hop cones ( L.) obtained by ultrasonic-assisted solvent extraction.

View Article and Find Full Text PDF

Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake.

View Article and Find Full Text PDF

Non-Invasive, Continuous, Quantitative Detection of Solvent Content in Vacuum Tray Drying.

AAPS J

August 2024

Pharmaceutical Commercialization Technology, MMD, Merck & Co., Inc., 770 Sumneytown Pike, West Point, 19486, PA, USA.

A non-invasive capacitance instrument was embedded in the base of a vacuum-drying tray to monitor continuously the residual amount of solvent left in a pharmaceutical powder. Proof of concept was validated with Microcrystalline Cellulose laced with water, as well as water/acetone mixtures absorbed in a spray-dried Copovidone powder. To illustrate the role of impermeability of the base, we derive a model of vapor sorption that reveals the existence of a kinetic limit when solids are thinly spread, and a diffusion limit with greatly diminished effective diffusivity at large powder thickness.

View Article and Find Full Text PDF

The presence of undesired agrochemicals residues in soil and water poses risks to both human health and the environment. The behavior of pesticides in soil depends both on the physico-chemical properties of pesticides and soil type. This study examined the adsorption-desorption and leaching behavior of the maize herbicide tembotrione in soils of the upper (UGPZ), trans (TGPZ) and middle Gangetic plain zones of India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!