Temozolomide (TMZ) is a promising chemotherapeutic agent to treat Glioblastoma multiforme (GBM). However, resistance to TMZ develops quickly with a high frequency. The mechanisms underlying GBM cells' resistance to TMZ are not fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. Recently, miRNAs have been discovered to play important roles in drug resistance. A previous study showed that miR-181b in involved in glioma tumorigenesis. Thus, it would be valuable to explore the functions and mechanisms of miR-181b in regulating GMB cells' sensitivity to TMZ. In this study, quantitative real-time reverse transcription PCR (qRT-PCR) data indicated that miR-181b was significantly downregulated in recurrent GBM tissues compared with initial GBM tissues. We also found that miR-181b overexpression increased the chemo-sensitivity of GBM cells to TMZ and potentiated TMZ-induced apoptosis in vitro and in vivo. Moreover, we demonstrated that the epidermal growth factor receptor (EGFR) was a direct target of miR-181b: restoration of EGFR rescued the inhibitory effects of miR-181b and TMZ treatment. Taken together, our data support strongly an important role for miR-181b in conferring TMZ resistance by targeting EGFR expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-017-2463-3DOI Listing

Publication Analysis

Top Keywords

mir-181b
8
glioblastoma multiforme
8
epidermal growth
8
growth factor
8
factor receptor
8
resistance tmz
8
gbm tissues
8
tmz
7
gbm
5
mir-181b modulates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!