Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto Ordered Mesoporous Carbon (OMC).

J Hazard Mater

Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, P. O. Box 43597, Lafayette, LA, 70504, USA. Electronic address:

Published: August 2017

Chemical and petrochemical industries produce substantial amounts of wastewater everyday. This wastewater contains organic pollutants such as benzene, toluene, ethylbenzene and xylenes (BTEX) that are toxic to human and aquatic life. Ordered Mesoporous Carbon (OMC), the adsorbent that possesses the characteristics of an ideal adsorbent was investigated to understand its properties and suitability for BTEX removal. Adsorption isotherms, adsorption kinetics, the effects of initial BTEX concentrations and temperatures on the adsorption process were studied. The OMCs were characterized using surface area and pore size analyzer, transmission electron microscopy (TEM), elemental analysis, thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FTIR). The results suggested that the Langmuir Isotherm and Pseudo-Second-Order Models described the experimental data well. The thermodynamic parameters, Gibbs free energy (ΔG°), the enthalpy change (ΔH°) and the entropy change (ΔS°) of adsorption indicated that the adsorption processes were physical, endothermic, and spontaneous. In addition, OMC had 27% higher overall adsorption capacities compared to granular activated carbon (GAC).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2017.04.073DOI Listing

Publication Analysis

Top Keywords

ordered mesoporous
8
mesoporous carbon
8
carbon omc
8
adsorption
7
equilibrium kinetic
4
kinetic thermodynamic
4
thermodynamic studies
4
studies adsorption
4
btex
4
adsorption btex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!