Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116).

J Photochem Photobiol B

Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India. Electronic address:

Published: June 2017

The eco-friendly synthesis of nanoparticles through green route from plant extracts have renowned a wide range of application in the field of modern science, due to increased drug efficacy and less toxicity in the nanosized mediated drug delivery model. In the present study, our research groups have biosynthesized the stable and cost effective copper oxide nanoparticles (CuO NPs) from the leaves of (Ormocarpum cochinchinense) O. cochinchinense. The synthesis of crystalline CuO NPs from the leaf extract of O. cochinchinense were confirmed by various analytical techniques like UV-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED) pattern. Further the synthesized CuO NPs were screened for anticancer activity on human colon cancer cell lines (HCT-116) by MTT (3-(4,5-dimethyl-2-tiazolyl)-2,5-diphenyl-2-tetrazolium bromide) assay. The obtained result inferred that the synthesized CuO NPs demonstrated high anticancer cytotoxicity on human colon cancer cell lines (HCT-116) with IC value of 40μgmL were discussed briefly in this manuscript.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2017.05.001DOI Listing

Publication Analysis

Top Keywords

cuo nps
16
human colon
12
colon cancer
12
cancer cell
12
cell lines
12
lines hct-116
12
copper oxide
8
oxide nanoparticles
8
anticancer activity
8
activity human
8

Similar Publications

In the present study, the effects of psyllium gum/sodium-alginate (PG/SA) coatings incorporated with essential oil (HEO) and copper oxide nanoparticles (CuO NPs) on various properties of silver carp fillets were investigated and monitored over 15 days of chilled storage condition (4 °C ± 1). The control sample (uncoated), PG/SA with 3% CuO NPs, PG/SA with 1% HEO, and PG/SA with 3% CuO NPs and 1% HEO (PG/SA-HC) were examined through chemical, microbial, and sensory analysis. The results revealed that the PG/SA-HC sample after 15 days of refrigeration demonstrated a significantly lower value than the others for total viable counts (8.

View Article and Find Full Text PDF

Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO Reduction.

J Am Chem Soc

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.

View Article and Find Full Text PDF

There is an important concern about the potential health and environmental risks that may develop due to exposure to copper oxide nanoparticles (CuO-NPs). Selenium is an essential trace element. It supports the expression of a variety of selenoproteins.

View Article and Find Full Text PDF

(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.

View Article and Find Full Text PDF

Copper nanoparticles (NPs) can be coupled with cuprous oxide, combining photoelectrocatalytic properties with a broad-range optical absorption. In the present study, we aimed to correlate changes in morphology, electronic structure and plasmonic properties of Cu NPs at different stages of oxidation. We demonstrated the ability to monitor the oxidation of NPs at the nanometric level using STEM-EELS spectral maps, which were analyzed with machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!