The role of multilayers in preventing the premature buckling of the pulmonary surfactant.

Biochim Biophys Acta Biomembr

Snyder Institute of Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Cell Biology & Anatomy, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Published: August 2017

The pulmonary surfactant is a protein-lipid mixture that spreads into a film at the air-lung interface. The highly-compacted molecules of the film keep the interface from shrinking under the influence of otherwise high surface tension and thus prevent atelectasis. We have previously shown that for the film to withstand a high film pressure without collapsing it needs to assume a specific architecture of a molecular monolayer with islands of stacks of molecular multilayers scattered over the area. Surface activity was assessed in a captive bubble surfactometer (CBS) and the role of cholesterol and oxidation on surfactant function examined. The surfactant film was conceptualized as a plate under pressure. Finite element analysis was used to evaluate the role of the multilayer stacks in preventing buckling of the plate during compression. The model of film topography was constructed from atomic force microscope (AFM) scans of surfactant films and known physical properties of dipalmitoylphosphatidylcholine (DPPC), a major constituent of surfactant, using ANSYS structural-analysis software. We report that multilayer structures increase film stability. In simulation studies, the critical load required to induce surfactant film buckling increased about two-fold in the presence of multilayers. Our in vitro surfactant studies showed that surface topography varied between functional and dysfunctional films. However, the critical factor for film stability was the anchoring of the multilayers. Furthermore, the anchoring of multilayers and mechanical stability of the film was dependent on the presence of hydrophobic surfactant protein-C. The current study expands our understanding of the mechanism of surfactant inactivation in disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2017.05.004DOI Listing

Publication Analysis

Top Keywords

surfactant
10
film
10
pulmonary surfactant
8
surfactant film
8
film stability
8
anchoring multilayers
8
role multilayers
4
multilayers preventing
4
preventing premature
4
premature buckling
4

Similar Publications

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques.

Pharmaceutics

January 2025

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.

View Article and Find Full Text PDF

Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.

Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.

View Article and Find Full Text PDF

Selection of In Vivo Relevant Dissolution Test Parameters for the Development of Cannabidiol Formulations with Enhanced Oral Bioavailability.

Pharmaceutics

January 2025

Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.

Cannabidiol (CBD) shows interesting therapeutic properties but has yet to demonstrate its full potential in clinical trials partly due to its low solubility in physiologic media. Two different formulations of CBD (amorphous and lipid-based) have been optimized and enable an increase in bioavailability in piglets. In vivo studies are time-consuming, costly and life-threatening.

View Article and Find Full Text PDF

Niosome Preparation Techniques and Structure-An Illustrated Review.

Pharmaceutics

January 2025

Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

A comprehensive review of recent research on niosomes was conducted using a mixed methodology, including searches in databases such as Scopus, PubMed, and Web of Science (WoS). Articles were selected based on relevance. The current review examines the historical development of niosomes focusing on the methods of preparations and the contemporary strategies and prospective advancements within the realm of drug delivery systems, highlighting innovative approaches across transdermal, oral, and cellular delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!