Challenges around automotive shredder residue production and disposal.

Waste Manag

Recycling Lives Recycling Park, Preston, Lancashire PR2 5BX, UK. Electronic address:

Published: March 2018

The challenge for the automotive industry is how to ensure they adopt the circular economy when it comes to the disposal of end-of-life vehicles (ELV). According to the European Commission the UK achieved a total reuse and recovery rate of 88%. This is short of the revised ELV directive target of 95% materials recovery, which requires a minimum of 85% of materials to be recycled or reused. A significant component of the recycling process is the production of automotive shredder residue (ASR). This is currently landfilled across Europe. The additional 10% could be met by processing ASR through either waste-to-energy facilities or Post shredder technology (PST) to recover materials. The UK auto and recycling sectors claimed there would need to be a massive investment by their members in both new capacity and new technology for PST to recover additional recycle materials. It has been shown that 50% of the ASR contains valuable recoverable materials which could be used to meet the Directive target. It is expected in the next 5years that technological innovation in car design will change the composition from easily recoverable metal to difficult polymers. This change in composition will impact on the current drive to integrate the European Circular Economy Package. A positive factor is that main driver for using ASR is coming from the metals recycling industry itself. They are looking to develop the infrastructure for energy generation from ASR and subsequent material recovery. This is driven by the economics of the process rather than meeting the Directive targets. The study undertaken has identified potential pathways and barriers for commercial thermal treatment of ASR. The results of ASR characterisation were used to assess commercial plants from around the world. Whilst there were many claiming that processing of ASR was possible none have so far shown both the technological capability and economic justification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2017.05.008DOI Listing

Publication Analysis

Top Keywords

automotive shredder
8
shredder residue
8
circular economy
8
directive target
8
asr
8
processing asr
8
technology pst
8
pst recover
8
change composition
8
materials
5

Similar Publications

In the recycling of metal-containing wastes such as end-of-life vehicles (ELV), residues are generated in the mechanical pre-treatment stage. Beside organics which is the main part of the residues, they also contain metals that physical separation has not been able to separate. As the current treatment of residues is disposal through thermal processing, the process is not optimized from the point of view of metal's recovery.

View Article and Find Full Text PDF

Impact of landfill characteristics on the atmospheric exposure to halogenated flame retardants in gulls.

Chemosphere

December 2023

Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada. Electronic address:

Large amounts of consumer products containing halogenated flame retardants (HFRs) are disposed of annually in landfills, which may lead to significant releases of these semi-volatile contaminants into the environment. During their foraging activities in landfills, gulls can be exposed to elevated levels of HFRs in air. Ring-billed gulls (Larus delawarensis) breeding in the densely populated Montreal area (QC, Canada) are significantly exposed to air levels of polybrominated diphenyl ethers (PBDEs) in or in the vicinity of landfills.

View Article and Find Full Text PDF

This article reports the characterisation of pyrolysis of automotive shredder residue using in situ synchrotron IR, gas-phase IR, and thermal analyses to explore if the automotive shredder residue can be converted into value-added products. When heating to ~600 °C at different heating rates, thermal analyses suggested one- to two-stage pyrolysis. Transformations in the first stage, at lower temperatures, were attributed to the degradation of carbonyl, hydroxyl, or carboxyl functional stabilisers (aldehyde and ether impurities, additives, and stabilisers in the ASR).

View Article and Find Full Text PDF

Although the use of plastic components is increasing in the automotive industry, yet the recovery rates of these materials in end-of-life vehicle (ELV) is lower compared to metals. One of the main problems of ELV plastic waste is poor separation and sorting. Large car plastic parts consist of fibre-reinforced plastics, whereas other components end up in the automotive shredder residue (ASR), featuring a very heterogeneous mix of light materials that contains mostly non-metallic materials such as textiles, plastics, cartridges and wood.

View Article and Find Full Text PDF

A material flow analysis of the main plastic types used and arising as waste in Switzerland in 2017 is conducted, including consideration of stock change. Seven main plastic application segments are distinguished (packaging; building and construction; automotive; electrical and electronic equipment; agriculture; household items, furniture, leisure and others; and textiles), further divided into 54 product subsegments. For each segment, the most commonly used plastic types are considered, in total including eleven plastic types (HDPE, LDPE, PP, PET, PS, PVC, ABS, HIPS, PA, PC, and PUR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!