Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2017.03.105DOI Listing

Publication Analysis

Top Keywords

resonance frequencies
8
moisture
5
in-line moisture
4
moisture monitoring
4
monitoring fluidized
4
fluidized bed
4
bed granulation
4
granulation novel
4
novel multi-resonance
4
multi-resonance microwave
4

Similar Publications

Background: Traumatic anterior shoulder dislocation is the most common type of joint dislocation, with an incidence of 11 to 29 per 100 000 persons per year. Controversy still surrounds the recommendations for treatment and the available procedures for surgical stabilization.

Methods: This review is based on pertinent publications (2014-2024) that were retrieved by a selective search in the PubMed and Google Scholar databases.

View Article and Find Full Text PDF

MRI-assessed Dynamic Hyperinflation Induced by Tachypnea in Chronic Obstructive Pulmonary Disease: The SPIROMICS-HF Study.

Radiol Cardiothorac Imaging

February 2025

From the Department of Biomedical Engineering (X.Z.) and Columbia Magnetic Resonance Research Center (CMRRC) (W.S.), Columbia University, New York, NY; Departments of Medicine (C.B.C., J.P.F.) and Radiology (J.P.F.), University of California at Los Angeles, Los Angeles, Calif; Department of Radiology, Weill Cornell Medicine, New York, NY (M.R.P.); Department of Radiology (M.R.P., S.M.D., S.J.), Department of Medicine (M.C.B., R.G.B.), Department of Epidemiology (R.G.B.), Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics (W.S.), and Institute of Human Nutrition (W.S.), Columbia University Irving Medical Center, 632 W 168th St, PH-17, New York, NY 10032; Department of Radiology (B.A.V., J.A.C.L.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (N.N.H.), Johns Hopkins University, Baltimore, Md; Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (D.A.B.); Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (D.C.); Departments of Radiology, Medicine, and the Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa (E.A.H.); Sections on Cardiology and Geriatrics, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (D.W.K.); Division of Pulmonary, Critical Care, Sleep, and Allergy (J.A.K.) and Department of Radiology, College of Medicine (M.G.M.), University of Illinois at Chicago, Chicago, Ill; Department of Radiology and Biomedical Imaging (Y.J.L., J.L.), Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, School of Medicine (P.G.W.), and Cardiovascular Research Institute (P.G.W.), University of California at San Francisco, San Francisco, Calif; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Wake Forest University, Winston-Salem, NC (J.O., S.P.P.); Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Phoenix, Ariz (V.E.O.); Department of Medicine, University of Utah, Salt Lake City, Utah (R.P.); Department of Radiology, Mayo Clinic, Rochester, Minn (J.D.S.); Department of Radiology, Hannover Medical School, Hannover, Germany (J.V.C.); and BREATH, Member of the German Center for Lung Research (DZL), Hannover, Germany (J.V.C.).

Purpose To assess the repeatability of real-time cine pulmonary MRI measures of metronome-paced tachypnea (MPT)-induced dynamic hyperinflation and its relationship with chronic obstructive pulmonary disease (COPD) severity. Materials and Methods SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) (ClinicalTrials.gov identifier no.

View Article and Find Full Text PDF

Objectives: Migraine is a common cause of headache and a leading cause of morbidity in Türkiye. This study aimed to describe the clinical characteristics and management of migraine and to compare migraine with tension-type headache (TTH) regarding the burden of disease and healthcare resource utilization.

Methods: A total of 1368 patients (aged 18-65 years) with migraine or TTH were surveyed regarding sociodemographics, headache characteristics, clinical management, disease burden, quality of life, and healthcare resource utilization within the previous 12 months.

View Article and Find Full Text PDF

A multi-band high-sensitivity microwave sensor for simultaneous detection of two dielectric materials.

Rev Sci Instrum

January 2025

The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System, Luoyang 471004, China.

A multi-band high-sensitivity microwave sensor is reported. The two resonance units are based on complementary square spiral resonators (CSSRs) and produce four measurement bands through parasitic resonances. The four frequency bands are 2.

View Article and Find Full Text PDF

The natural vibrational frequencies of biological particles such as viruses and bacteria encode critical information about their mechanical and biological states as they interact with their local environment and undergo structural evolution. However, detecting and tracking these vibrations within a biological context at the single particle level has remained elusive. In this study, we track the vibrational motions of single, unlabeled virus particles under ambient conditions using ultrafast spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!