Obesity is one of the independent risk factors for several health problems, leading to metabolic perturbations and for which analytical approaches i.e., "metabolomics" is needed to monitor the underlying metabolic changes. In this study, obesity associated changes were assessed via serum metabolites analysis of obese rats fed on high fat diet. Obese rats were subsequently treated with different functional foods used for obesity management including pomegranate, grapefruit, and red cabbage in parallel to swimming exercise. Serum samples were analyzed using gas chromatography-mass spectrometry (GC-MS) followed by multivariate data analysis to classify samples and determine if such treatments can help revert obesity related metabolic changes back to normal status. Results led to the identification of several novel metabolites biomarkers for obesity related to lipids, amino acids and central tricarboxylic acid (TCA) pathways. Distinct variations in metabolite levels were recorded in obese rats compared to normal ones including l-aspartic, l-alanine, l-glutamine, l-glycine, phenylethanolamine, α-aminobutyric acid and β-hydroxybutyric acid. Metabolomics approach developed herein provides novel insight onto the metabolic disturbances associated with obesity, which will assist in future drug design that can help mitigate against such changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.05.001DOI Listing

Publication Analysis

Top Keywords

obese rats
12
functional foods
8
obesity management
8
metabolic changes
8
obesity
7
serum metabolomics
4
metabolomics reveals
4
reveals mechanistic
4
mechanistic role
4
role functional
4

Similar Publications

Obesity, recognized as a metabolic disease and a global epidemic, calls for novel pharmacological interventions. Menthol, an organic compound, has shown promise in increasing energy expenditure and has been proposed as a potential anti-obesity drug. While preclinical studies have demonstrated menthol's preventive effect on body mass gain, none have investigated its efficacy in treating obesity.

View Article and Find Full Text PDF

Therapeutic Potential of Ketogenic Interventions for Autosomal-Dominant Polycystic Kidney Disease: A Systematic Review.

Nutrients

December 2024

Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.

Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil ( L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism.

View Article and Find Full Text PDF

Insulin-Sensitizing Properties of Decoctions from Leaves, Stems, and Roots of L.

Molecules

December 2024

Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.

View Article and Find Full Text PDF

Elucidating the effect of camel α-lactalbumin in modulating obesity-related metabolic disorders in an obese rat model.

Int J Biol Macromol

January 2025

Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen, Tlemcen 13000, Algeria. Electronic address:

Camel α-Lactalbumin (α-LAC) has been shown to exert bioactivities for Reactive oxygen species (ROS) scavenging and anti-inflammation, showing the ability to treat obesity-related metabolic disorders. Herein, we present a novel process to purify α-LAC in a single chromatographic step from camel whey in a flow-through format. We also demonstrate the role of α-LAC modulation strategies for the treatment of obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!