A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. | LitMetric

Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity.

Bioorg Chem

Laboratory of Heteroatom Organic Chemistry, University of Carthage, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia. Electronic address:

Published: June 2017

Based on the broad spectrum of biological activities associated with organophosphates, a novel type of this class of compounds was synthesized, bearing a nitrile group, from the sodium alkoxide-catalyzed reaction of dialkylphosphites with γ-ketonitriles at 80°C under solvent-free conditions. A reaction mechanism involving a phospha-Brook type rearrangement is proposed. Eight title compounds were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Ellman's spectrophotometric method. The synthesized derivatives exhibited mostly a moderate activity against both cholinesterases. The IC values for BChE were in a smaller concentration range (5.96-23.35µM) compared to those for AChE inhibition (9.61-53.74µM). The diethyl-3-cyano-1-p-tolylpropylphosphate which displayed the higher dual inhibitory potency towards both cholinesterases could be considered as a potential candidate for developing new drugs to treat Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2017.05.008DOI Listing

Publication Analysis

Top Keywords

inhibitory potency
8
efficient synthesis
4
synthesis novel
4
novel dialkyl-3-cyanopropylphosphate
4
dialkyl-3-cyanopropylphosphate derivatives
4
derivatives evaluation
4
evaluation anticholinesterase
4
anticholinesterase activity
4
activity based
4
based broad
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!