Bordetella effector BopN is translocated into host cells via its N-terminal residues.

Microbiol Immunol

Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.

Published: June 2017

AI Article Synopsis

  • Bordetella bronchiseptica uses a type III secretion system (T3SS) to infect a range of mammals, affecting their respiratory systems by introducing virulence factors into host cells.
  • BopN and BteA are key effectors: BopN increases IL-10 levels, while BteA is associated with cytotoxicity.
  • Research on BopN shows that its N-terminal amino acid residues 1-200 are essential for its entry into host cells, and the removal of residues 6-50 completely stops this process, suggesting BopN also enhances BteA’s toxic effects.

Article Abstract

Bordetella bronchiseptica infects a wide variety of mammals, the type III secretion system (T3SS) being involved in long-term colonization by Bordetella of the trachea and lung. T3SS translocates virulence factors (commonly referred to as effectors) into host cells, leading to alterations in the host's physiological function. The Bordetella effectors BopN and BteA are known to have roles in up-regulation of IL-10 and cytotoxicity, respectively. Nevertheless, the mechanism by which BopN is translocated into host cells has not been examined in sufficient detail. Therefore, to determine the precise mechanisms of translocation of BopN into host cells, truncated derivatives of BopN were built and the derivatives' ability to translocate into host cells evaluated by adenylate cyclase-mediated translocation assay. It was found that N-terminal amino acid (aa) residues 1-200 of BopN are sufficient for its translocation into host cells. Interestingly, BopN translocation was completely blocked by deletion of the N-terminal aa residues 6-50, indicating that the N-terminal region is critical for BopN translocation. Furthermore, BopN appears to play an auxiliary role in BteA-mediated cytotoxicity. Thus, BopN can apparently translocate into host cells and may facilitate activity of BteA.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1348-0421.12489DOI Listing

Publication Analysis

Top Keywords

host cells
28
bopn
10
bopn translocated
8
translocated host
8
n-terminal residues
8
translocation bopn
8
translocate host
8
bopn translocation
8
host
7
cells
7

Similar Publications

Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.

J Virol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.

View Article and Find Full Text PDF

Discovery of a heparan sulfate binding domain in monkeypox virus H3 as an anti-poxviral drug target combining AI and MD simulations.

Elife

January 2025

State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.

View Article and Find Full Text PDF

Phage-ELISA for ultrasensitive detection of .

Analyst

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.

The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with (strain C50041) to induce diverse antibodies.

View Article and Find Full Text PDF

How are autoreactive T cells induced and regulated in patients with autoimmune disease? This question lies at the core of understanding autoimmune disease pathologies, yet it has remained elusive due to host variability and the complexity of the immune system. In this issue of the JCI, Kramer and colleagues used autoimmune hepatitis (AIH) as a model to explore the maintenance of autoreactive CD4+ T cells specific to O-phosphoseryl-tRNA:selenocysteine tRNA synthase (SepSecS). The findings provide insight into the interaction between T cells and B cells in AIH pathogenesis that may reflect a shared mechanism among other autoimmune diseases.

View Article and Find Full Text PDF

Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites.

Front Parasitol

February 2024

Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States.

An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!