Archaeal photoreceptors consist of sensory rhodopsins in complex with their cognate transducers. After light excitation, a two-component signaling chain is activated, which is homologous to the chemotactic signaling cascades in enterobacteria. The latter system has been studied in detail. From structural and functional studies, a picture emerges which includes stable signaling complexes, which assemble to receptor arrays displaying hexagonal structural elements. At this higher order structural level, signal amplification and sensory adaptation occur. Here, we describe electron microscopy data, which show that also the archaeal phototaxis receptors sensory rhodopsin I and II in complex with their cognate transducers can form hexagonal lattices even in the presence of a detergent. This result could be confirmed by molecular dynamics calculations, which revealed similar structural elements. Calculations of the global modes of motion displayed one mode, which resembles the "U"-"V" transition of the NpSRII:NpHtrII complex, which was previously argued to represent a functionally relevant global conformational change accompanying the activation process [Ishchenko et al. (2013) J. Photochem. Photobiol. B 123, 55-58]. A model of cooperativity at the transmembrane level is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.12763DOI Listing

Publication Analysis

Top Keywords

sensory rhodopsin
12
complex cognate
12
cognate transducers
12
structural elements
8
sensory
5
rhodopsin sensory
4
rhodopsin form
4
form trimers
4
trimers dimers
4
complex
4

Similar Publications

The Rab11-Rabin8-Rab8 ciliogenesis complex regulates the expansion of cilia-derived light-sensing organelles, the rod outer segments, via post-Golgi rhodopsin transport carriers (RTCs). Rabin8, an effector of Rab11 and a nucleotide exchange factor (GEF) for Rab8, is phosphorylated at S272 by NDR2 kinase (aka STK38L), a canine erd gene product linked to the human ciliopathy Leber congenital amaurosis (LCA). Here, we define the step at which NDR2 phosphorylated Rabin8 regulates Rab11-Rab8 succession in X.

View Article and Find Full Text PDF

Autophagy in the retina affects photoreceptor synaptic plasticity and behavior.

J Insect Physiol

December 2024

Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland. Electronic address:

The visual system is a sensory system which is sensitive to light and detects photic stimuli. It plays many important functions, such as vision, circadian clock entrainment and regulation of sleep-wake behavior. The interconnection between the visual system and clock network is precisely regulated.

View Article and Find Full Text PDF

In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice.

Proc Natl Acad Sci U S A

November 2024

Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA 92617.

Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death.

View Article and Find Full Text PDF

Optic photoreception is a critical function for animal survival. Across the evolutionary spectrum, diverse animal models have been used to investigate visual system function and potential mechanisms under physiological or pathophysiological states. However less is known on photoreceptive behaviors and retinal processing in invertebrates, especially molluscs.

View Article and Find Full Text PDF

Retinal Chromophore Configuration in the O Intermediate of Sensory Rhodopsin II from .

Biochemistry

November 2024

Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.

Article Synopsis
  • - Sensory rhodopsin II (SRII) is a light-sensitive protein that transforms when it absorbs light, leading to signaling changes through photointermediates: M and O.
  • - The M intermediate features a deprotonated chromophore, while the O intermediate has a protonated chromophore with an unusual 15- (C═N) configuration.
  • - Using Raman spectroscopy, the study reveals that the chromophore in the O intermediate actually shows a 13-, 15- (C═N) configuration, challenging the previously accepted structural changes associated with SRII's signaling.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!