In magnetic resonance (MR)-targeted, 3-D transrectal ultrasound (TRUS)-guided biopsy, prostate motion during the procedure increases the needle targeting error and limits the ability to accurately sample MR-suspicious tumor volumes. The robustness of the 2-D-3-D registration methods for prostate motion compensation is impacted by local optima in the search space. In this paper, we analyzed the prostate motion characteristics and investigated methods to incorporate such knowledge into the registration optimization framework to improve robustness against local optima. Rigid motion of the prostate was analyzed adopting a mixture-of-Gaussian (MoG) model using 3-D TRUS images acquired at bilateral sextant probe positions with a mechanically assisted biopsy system. The learned motion characteristics were incorporated into Powell's direction set method by devising multiple initial search positions and initial search directions. Experiments were performed on data sets acquired during clinical biopsy procedures, and registration error was evaluated using target registration error (TRE) and converged image similarity metric values after optimization. After incorporating the learned initialization positions and directions in Powell's method, 2-D-3-D registration to compensate for motion during prostate biopsy was performed with rms ± std TRE of 2.33 ± 1.09 mm with ~3 s mean execution time per registration. This was an improvement over 3.12 ± 1.70 mm observed in Powell's standard approach. For the data acquired under clinical protocols, the converged image similarity metric value improved in ≥8% of the registrations whereas it degraded only ≤1% of the registrations. The reported improvements in optimization indicate useful advancements in robustness to ensure smooth clinical integration of a registration solution for motion compensation that facilitates accurate sampling of the smallest clinically significant tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2017.2703150DOI Listing

Publication Analysis

Top Keywords

prostate motion
16
2-d-3-d registration
12
motion compensation
12
motion
9
registration
8
registration optimization
8
trus-guided biopsy
8
local optima
8
motion characteristics
8
motion prostate
8

Similar Publications

Purpose: A single phase III trial has demonstrated that prostate radiotherapy with a focal, intra-prostatic "microboost" can improve disease control without an overall increase in toxicity. It is unclear how these results generalize to other treatment schedules and protocols.

Methods: A systematic search of PubMed and the Cochrane Review was performed for studies published on or before September 1, 2023.

View Article and Find Full Text PDF

Background: Various methods exist to correct for intrafraction motion (IFM) of the prostate during radiotherapy. We sought to characterize setup corrections in our practice informed by the TrueBeam Advanced imaging package, and analyze factors associated with IFM.

Methods: 132 men received radiation therapy for prostate cancer with a volumetric modulated arc therapy technique.

View Article and Find Full Text PDF

Background: Exercise can attenuate the deleterious combined effects of cancer treatment and aging among older adults with cancer, yet exercise participation is low. Telehealth exercise may improve exercise engagement by decreasing time and transportation barriers; however, the utility of telehealth exercise among older adults with cancer is not well established.

Objective: We aimed to evaluate the preliminary effectiveness of a one-on-one, supervised telehealth exercise program on physical function, muscular endurance, balance, and flexibility among older adults with cancer.

View Article and Find Full Text PDF

Purpose: This study focused on reducing the margin for prostate cancer treatment using magnetic resonance imaging-guided radiotherapy by investigating the intrafractional motion of the prostate and different motion-mitigation strategies.

Methods: We retrospectively analyzed intrafractional prostate motion in 77 patients with low- to intermediate-risk prostate cancer treated with five fractions of 7.25 Gy on a 1.

View Article and Find Full Text PDF

Introduction: Prostate motion during external beam radiotherapy (EBRT) is common and typically managed using fiducial markers and cone beam CT (CBCT) scans for inter-fractional motion correction. However, real-time intra-fractional motion management is less commonly implemented. This study evaluated the extent of intra-fractional prostate motion using transperineal ultrasound (TPUS) and examined the impact of treatment time on prostate motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!