Both gamma- and zeta-collagenases from Clostridium histolyticum are fully and reversibly inhibited by 1,10-phenanthroline at pH 7.5 in the presence of 10 mM CaCl2 with KI values of 0.11 and 0.040 mM, respectively. The inhibition is caused by removal of the single, active-site Zn(II) present in each of these enzymes. The nonchelating analogue 1,5-phenanthroline has no effect on the activity of either enzyme. Dialysis of the enzymes in the presence of 1,10-phenanthroline, followed by back dialysis against buffer containing no chelating agent, gives the respective apocollagenases. Both apoenzymes can be instantaneously and fully reactivated by the addition of 1 equiv of Zn(II). Variable amounts of activity are restored to both apocollagenases by Co(II) and Ni(II) and to gamma-apocollagenase by Cu(II). The activity titration curve for gamma-apocollagenase with Co(II) and Scatchard plots for the reconstitution of gamma-apocollagenase with Cu(II) and Ni(II) and of zeta-apocollagenase with Ni(II) and Co(II) indicate that all activity changes are the result of binding of a single equivalent of these divalent metal ions at the active site of the collagenases. Cd(II) and Hg(II) do not restore measurable activity to either apoenzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00419a035 | DOI Listing |
ChemSusChem
January 2025
Guangxi Normal University, Chemistry and Pharmaceutical Sciences, CHINA.
Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).
View Article and Find Full Text PDFRNA Biol
December 2025
Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.
View Article and Find Full Text PDFNat Commun
January 2025
Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biochemistry, University of Zurich, Zurich, Switzerland.
Iron and manganese are essential nutrients whose transport across membranes is catalyzed by members of the SLC11 family. In humans, this protein family contains two paralogs, the ubiquitously expressed DMT1, which is involved in the uptake and distribution of Fe and Mn, and NRAMP1, which participates in the resistance against infections and nutrient recycling. Despite previous studies contributing to our mechanistic understanding of the family, the structures of human SLC11 proteins and their relationship to functional properties have remained elusive.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.
Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!