A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. | LitMetric

Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation.

Acta Biomater

Department of Periodontics and Community Dentistry, College of Dentistry Research Center (CDRC), King Saud University, Riyadh, Saudi Arabia. Electronic address: http://www.rimls.nl/people/a/alghamdi-hamdan/.

Published: July 2017

Unlabelled: This study investigated whether a novel alkali-based surface modification enhances in vitro mineralization as well as in vivo bone formation around titanium (Ti) implants in a femoral condyle model of 36 male Wister rats. All implant surfaces were grit-blasted and then received either acid-etching treatment, alkali-based treatment, or were left untreated (controls). Histological and histomorphometrical analyses were performed on retrieved specimens after 4 and 8weeks of healing to assess peri-implant bone formation. Results of implants surface characterisation showed notable differences in the topography and composition of alkali-treated surfaces, reflecting the formation of submicron-structured alkali-titanate layer. In the in vitro test, alkali-treated Ti surfaces showed the ability to stimulate mineralization upon soaking in simulated body fluid (SBF). In vivo histomorphometrical analyses showed similar values for bone area (BA%) and bone-to-implant contact (BIC%) for all experimental groups after both 4- and 8-week implantation periods. In conclusion, the surface topography and composition of the grit-blasted Ti implants was significantly modified using alkali-based treatment. With respect to the present in vivo model, the biological performance of alkali-treated Ti implants is comparable to the commercially available, grit-blasted, acid-etched Ti implants.

Statement Of Significance: Since success rate of dental implants might be challenged in bone of low density, an optimum implant surface characteristic is demanding. In this work, alkali treatment of Ti implants showed significant advantage of surface mineralization upon soaking in simulated body fluid. Using an in vivo rat model, Ti surfaces with either acid-etching treatment or alkali-based treatment evoked robust bone formation around Ti implants. Such information may be utilized for the advancement of biomaterials research for bone implants in future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2017.05.016DOI Listing

Publication Analysis

Top Keywords

alkali-based treatment
16
bone formation
16
implants
9
titanium implants
8
vitro mineralization
8
vivo bone
8
acid-etching treatment
8
treatment alkali-based
8
histomorphometrical analyses
8
formation implants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!