Exacerbation of liver steatosis following exposure to famine and overnutrition.

Mol Nutr Food Res

Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.

Published: October 2017

Scope: People suffering from famine in early life and overnutrition in adulthood may have an increased risk for liver steatosis. We aimed to investigate the effects and mechanisms of early nutrition restriction and overnutrition on de novo lipogenesis in the liver.

Methods And Results: Three-wk-old male rats were food restricted for 4 wk and refed a high-fat or normal fat diet individually in metabolic cages for 9 wk. Weight-matched groups were also set up. Fatty acid synthetase expression was measured to estimate de novo lipogenesis in the liver. Parameters of glucose and lipid metabolism were measured with isotope assays. All four groups had comparable body weights. However, the famine high-fat diet group had the highest degree of liver steatosis, the greatest body fat ratio, and insulin resistance. Lipid accumulation, fatty acid synthetase expression, and gluconeogenesis in the liver were significantly higher in the famine and high-fat diet groups (p < 0.05). Moreover, these groups also had markedly lower muscle glucose uptake.

Conclusion: Under famine and high-fat refeeding stress, rats were extremely susceptible to developing hepatic steatosis. This is presumably a consequence of upregulation of de novo lipogenesis and enhanced glucose flux from muscle to de novo lipogenesis in the liver.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201700097DOI Listing

Publication Analysis

Top Keywords

liver steatosis
12
novo lipogenesis
8
fatty acid
8
acid synthetase
8
synthetase expression
8
famine high-fat
8
high-fat diet
8
exacerbation liver
4
steatosis exposure
4
famine
4

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly.

View Article and Find Full Text PDF

Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza, has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!