The organic light-emitting diode (OLED) is an area light source, and its primary competing technology is the edge-lit light-emitting diode (LED) panel. Both technologies are similar in shape and appearance, but there is little understanding of how people perceive discomfort glare (DG) from area sources. The objective of this study was to evaluate the DG of these two technologies under similar operating conditions. Additionally, two existing DG models were compared to evaluate the correlation between predicted values and observed values. In an earlier study, we found no statistically significant difference in human response in terms of DG between OLED and edge-lit LED panels when the two sources produced the same luminous stimulus. The range of testing stimulus was expanded to test different panel luminances at three background illuminations. The results showed no difference in perceived glare between the panels, and, as the background illumination increased, the perceived glare decreased. In other words, both appeared equally glary beyond a certain luminance and background illumination. We then compared two existing glare models with the observed values and found that one model showed a good estimation of how humans perceive DG. That model was further modified to increase its power.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.22.5.055004 | DOI Listing |
Nanoscale
January 2025
Hunan Automotive Engineering Vocational University, Zhuzhou 412001, P. R. China.
The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.
Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shenzhen University, College of Materials Science and Engineering, Xueyuan Avenue, 518000, Shenzhen, CHINA.
The development of pure-green organic emitters with ideal emission peak and ultra-narrow full-widths at half-maximum (FWHMs) remains a formidable challenge. Herein, we report two new green emitters, CNBN and MCNBN, which achieve extremely narrow FWHMs by synergistic rigid π-extension and cyano-substitution for sky-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) core. The introduction of cyano groups induces red-shifts of emission to green region and dramatically minimize the FWHMs.
View Article and Find Full Text PDFChem Sci
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!